Alex Gois Orlandi, O. A. C. Carvalho Júnior, R. Guimarães, E. Bias, Douglas Corbari Corrêa, R. Gomes
{"title":"VERTICAL ACCURACY ASSESSMENT OF THE PROCESSED SRTM DATA FOR THE BRAZILIAN TERRITORY","authors":"Alex Gois Orlandi, O. A. C. Carvalho Júnior, R. Guimarães, E. Bias, Douglas Corbari Corrêa, R. Gomes","doi":"10.1590/s1982-21702019000400021","DOIUrl":null,"url":null,"abstract":"This research aims to determine the vertical accuracy of the Interferometric Digital Elevation Model (DEM) obtained from the processed Shuttle Radar Topographic Mission (SRTM) data. The research compared the SRTM-GL1 (Shuttle Radar Topographic Mission-Global 1) with 30-meter resolution and the following 90-meter resolution models: (a) EMBRAPA; (b) Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales (HydroSHEDS) (HydroSHEDS), provided by the United States Geological Survey (USGS); (c) Consultative Group for International Agricultural Research-Consortium for Spatial Information (CGIAR-CSI); and (d) Jonathan de Ferranti. The accuracy analysis considered the diverse Brazilian regions, adopting 1,087 field points from the Global Navigation Satellite System (GNSS) trackers or topography methods. The Jonathan de Ferranti model achieved the best accuracy with RMSE of 9.61m among the 90-meter resolution models. Most SRTM models at 1:100,000 scale reached Grade A of the Cartographic Accuracy Standard. However, the accuracy at the 1: 50,000 scale did not achieve the same performance. SRTM errors are linearly related to slope and the most significant errors always occur in forest areas. The 30-meter resolution SRTM showed an accuracy of around 10% better (RMSE of 8.52m) than the model of Jonathan de Ferranti with 90-meter resolution (RMSE of 9.61m).","PeriodicalId":55347,"journal":{"name":"Boletim De Ciencias Geodesicas","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim De Ciencias Geodesicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/s1982-21702019000400021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 8
Abstract
This research aims to determine the vertical accuracy of the Interferometric Digital Elevation Model (DEM) obtained from the processed Shuttle Radar Topographic Mission (SRTM) data. The research compared the SRTM-GL1 (Shuttle Radar Topographic Mission-Global 1) with 30-meter resolution and the following 90-meter resolution models: (a) EMBRAPA; (b) Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales (HydroSHEDS) (HydroSHEDS), provided by the United States Geological Survey (USGS); (c) Consultative Group for International Agricultural Research-Consortium for Spatial Information (CGIAR-CSI); and (d) Jonathan de Ferranti. The accuracy analysis considered the diverse Brazilian regions, adopting 1,087 field points from the Global Navigation Satellite System (GNSS) trackers or topography methods. The Jonathan de Ferranti model achieved the best accuracy with RMSE of 9.61m among the 90-meter resolution models. Most SRTM models at 1:100,000 scale reached Grade A of the Cartographic Accuracy Standard. However, the accuracy at the 1: 50,000 scale did not achieve the same performance. SRTM errors are linearly related to slope and the most significant errors always occur in forest areas. The 30-meter resolution SRTM showed an accuracy of around 10% better (RMSE of 8.52m) than the model of Jonathan de Ferranti with 90-meter resolution (RMSE of 9.61m).
期刊介绍:
The Boletim de Ciências Geodésicas publishes original papers in the area of Geodetic Sciences and correlated ones (Geodesy, Photogrammetry and Remote Sensing, Cartography and Geographic Information Systems).
Submitted articles must be unpublished, and should not be under consideration for publication in any other journal. Previous publication of the paper in conference proceedings would not violate the originality requirements. Articles must be written preferably in English language.