Classifying Economic Areas for Urban Planning using Deep Learning and Satellite Imagery in East Africa

IF 1 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Davy Uwizera, C. Ruranga, P. McSharry
{"title":"Classifying Economic Areas for Urban Planning using Deep Learning and Satellite Imagery in East Africa","authors":"Davy Uwizera, C. Ruranga, P. McSharry","doi":"10.36227/techrxiv.14779371","DOIUrl":null,"url":null,"abstract":"In this research we use data from a number of different sources of satellite imagery. Below we describe and visualize various metrics of the datasets being considered. Satellite imagery is retrieved from Google earth which is supported by Data SIO (Scripps Institution of Oceanography), NOAA (National Oceanic and Atmospheric Administration), US. Navy (United States Navy), NGA (National Geospatial-Intelligence Agency), GEBCO (General Bathymetric Chart of the Oceans), Image Landsat, and Image IBCAO (International Bathymetric Chart of the Arctic Ocean). Using random sampling of spatial area in Kigali per target area, 342,843 thousands images were retrieved under the five categories: residential high income (78941), residential low income(162501), residential middle income(101401), commercial building, (67400) and industrial zone,(24400). For the industrial zone, we also included some images from Nairobi, Kenya industrial spatial area. The average number of samples for a category is 86929. The size of the sample per category is proportional to the size of the spatial target area considered per category. Kigali is located at latitude:-1.985070 and longitude:-1.985070, coordinates. Nairobi is located at latitude:-1.286389 and longitude:36.817223, coordinates.","PeriodicalId":42493,"journal":{"name":"SAIEE Africa Research Journal","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAIEE Africa Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36227/techrxiv.14779371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this research we use data from a number of different sources of satellite imagery. Below we describe and visualize various metrics of the datasets being considered. Satellite imagery is retrieved from Google earth which is supported by Data SIO (Scripps Institution of Oceanography), NOAA (National Oceanic and Atmospheric Administration), US. Navy (United States Navy), NGA (National Geospatial-Intelligence Agency), GEBCO (General Bathymetric Chart of the Oceans), Image Landsat, and Image IBCAO (International Bathymetric Chart of the Arctic Ocean). Using random sampling of spatial area in Kigali per target area, 342,843 thousands images were retrieved under the five categories: residential high income (78941), residential low income(162501), residential middle income(101401), commercial building, (67400) and industrial zone,(24400). For the industrial zone, we also included some images from Nairobi, Kenya industrial spatial area. The average number of samples for a category is 86929. The size of the sample per category is proportional to the size of the spatial target area considered per category. Kigali is located at latitude:-1.985070 and longitude:-1.985070, coordinates. Nairobi is located at latitude:-1.286389 and longitude:36.817223, coordinates.
利用深度学习和卫星图像对东非城市规划的经济区域进行分类
在这项研究中,我们使用了来自许多不同来源的卫星图像的数据。下面我们描述和可视化正在考虑的数据集的各种指标。卫星图像检索自谷歌地球,由美国国家海洋和大气管理局(NOAA)和斯克里普斯海洋研究所(Data SIO)提供支持。海军(美国海军),NGA(国家地理空间情报局),GEBCO(海洋通用水深图),图像陆地卫星和图像IBCAO(北冰洋国际水深图)。对基加利每个目标区域的空间面积进行随机抽样,共检索到高收入住宅(78941)、低收入住宅(162501)、中等收入住宅(101401)、商业建筑(67400)和工业区(24400)5类342,84.3万幅图像。对于工业区,我们还包括一些来自肯尼亚内罗毕工业空间区域的图像。一个类别的平均样本数为86929。每个类别的样本大小与每个类别所考虑的空间目标区域的大小成正比。基加利位于纬度:-1.985070,经度:-1.985070,坐标。内罗毕位于纬度:-1.286389,经度:36.817223,坐标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SAIEE Africa Research Journal
SAIEE Africa Research Journal ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信