Peter A. Siver, Laurence J. Marsicano, Anne-Marie Lott, Stephen Wagener, Nate Morris
{"title":"Wind induced impacts on hypolimnetic temperature and thermal structure of Candlewood Lake (Connecticut, U.S.A.) from 1985–2015","authors":"Peter A. Siver, Laurence J. Marsicano, Anne-Marie Lott, Stephen Wagener, Nate Morris","doi":"10.1002/geo2.56","DOIUrl":null,"url":null,"abstract":"<p>Climate change has affected freshwater lakes in many ways, including shifts in thermal structure, stability, ice cover, annual mixing regimes and length of the growing season, all of which impact ecosystem structure and function. We examine the impacts climate variables, especially wind speed, had on water temperature and thermal stratification at three sites in Candlewood Lake (Connecticut, U.S.A.) between 1985 and 2015. Despite the lack of regional time-related trends in air temperature or precipitation over the 31 year period, there was a significant decline in wind speed during spring and summer months, with a mean decline of 31% over the study period. Even though a wide range in mean July epilimnetic temperature (22.8–28.2°C) was observed, there was no trend over time. In contrast, a significant cooling trend was recorded for the hypolimnion that was highly correlated with the declining wind speed. Decreasing wind speed was also correlated with an increase in the strength of the thermocline estimated from maximum RTRM values. Despite the lack of a warming trend in surface waters over the entire study period, the strength of summer thermal stability estimated using total RTRM scores was highly correlated with epilimnetic temperature. The potential consequences of declining wind speed, a cooling hypolimnion, and a stronger thermocline are discussed.</p>","PeriodicalId":44089,"journal":{"name":"Geo-Geography and Environment","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/geo2.56","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geo-Geography and Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/geo2.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 7
Abstract
Climate change has affected freshwater lakes in many ways, including shifts in thermal structure, stability, ice cover, annual mixing regimes and length of the growing season, all of which impact ecosystem structure and function. We examine the impacts climate variables, especially wind speed, had on water temperature and thermal stratification at three sites in Candlewood Lake (Connecticut, U.S.A.) between 1985 and 2015. Despite the lack of regional time-related trends in air temperature or precipitation over the 31 year period, there was a significant decline in wind speed during spring and summer months, with a mean decline of 31% over the study period. Even though a wide range in mean July epilimnetic temperature (22.8–28.2°C) was observed, there was no trend over time. In contrast, a significant cooling trend was recorded for the hypolimnion that was highly correlated with the declining wind speed. Decreasing wind speed was also correlated with an increase in the strength of the thermocline estimated from maximum RTRM values. Despite the lack of a warming trend in surface waters over the entire study period, the strength of summer thermal stability estimated using total RTRM scores was highly correlated with epilimnetic temperature. The potential consequences of declining wind speed, a cooling hypolimnion, and a stronger thermocline are discussed.
期刊介绍:
Geo is a fully open access international journal publishing original articles from across the spectrum of geographical and environmental research. Geo welcomes submissions which make a significant contribution to one or more of the journal’s aims. These are to: • encompass the breadth of geographical, environmental and related research, based on original scholarship in the sciences, social sciences and humanities; • bring new understanding to and enhance communication between geographical research agendas, including human-environment interactions, global North-South relations and academic-policy exchange; • advance spatial research and address the importance of geographical enquiry to the understanding of, and action about, contemporary issues; • foster methodological development, including collaborative forms of knowledge production, interdisciplinary approaches and the innovative use of quantitative and/or qualitative data sets; • publish research articles, review papers, data and digital humanities papers, and commentaries which are of international significance.