On transcendental entire functions with infinitely many derivatives taking integer values at several points

Q4 Mathematics
M. Waldschmidt
{"title":"On transcendental entire functions with infinitely many derivatives taking integer values at several points","authors":"M. Waldschmidt","doi":"10.2140/MOSCOW.2020.9.371","DOIUrl":null,"url":null,"abstract":"Let $s_0,s_1,\\dots,s_{m-1}$ be complex numbers and $r_0,\\dots,r_{m-1}$ rational integers in the range $0\\le r_j\\le m-1$. Our first goal is to prove that if an entire function $f$ of sufficiently small exponential type satisfies $f^{(mn+r_j)}(s_j)\\in{\\mathbb Z}$ for $0\\le j\\le m-1$ and all sufficiently large $n$, then $f$ is a polynomial. Under suitable assumptions on $s_0,s_1,\\dots,s_{m-1}$ and $r_0,\\dots,r_{m-1}$, we introduce interpolation polynomials $\\Lambda_{nj}$, ($n\\ge 0$, $0\\le j\\le m-1$) satisfying $$ \\Lambda_{nj}^{(mk+r_\\ell)}(s_\\ell)=\\delta_{j\\ell}\\delta_{nk}, \\quad\\hbox{for}\\quad n, k\\ge 0 \\quad\\hbox{and}\\quad 0\\le j, \\ell\\le m-1 $$ and we show that any entire function $f$ of sufficiently small exponential type has a convergent expansion $$ f(z)=\\sum_{n\\ge 0} \\sum_{j=0}^{m-1}f^{(mn+r_j)}(s_j)\\Lambda_{nj}(z). $$ The case $r_j=j$ for $0\\le j\\le m-1$ involves successive derivatives $f^{(n)}(w_n)$ of $f$ evaluated at points of a periodic sequence ${\\mathbf{w}}=(w_n)_{n\\ge 0}$ of complex numbers, where $w_{mh+j}=s_j$ ($h\\ge 0$, $0\\le j\\le m$). More generally, given a bounded (not necessarily periodic) sequence ${\\mathbf{w}}=(w_n)_{n\\ge 0}$ of complex numbers, we consider similar interpolation formulae $$ f(z)=\\sum_{n\\ge 0}f^{(n)}(w_n)\\Omega_{\\mathbf{w},n}(z) $$ involving polynomials $\\Omega_{\\mathbf{w},n}(z)$ which were introduced by W.~Gontcharoff in 1930. Under suitable assumptions, we show that the hypothesis $f^{(n)}(w_n)\\in{\\mathbb Z}$ for all sufficiently large $n$ implies that $f$ is a polynomial.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/MOSCOW.2020.9.371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Let $s_0,s_1,\dots,s_{m-1}$ be complex numbers and $r_0,\dots,r_{m-1}$ rational integers in the range $0\le r_j\le m-1$. Our first goal is to prove that if an entire function $f$ of sufficiently small exponential type satisfies $f^{(mn+r_j)}(s_j)\in{\mathbb Z}$ for $0\le j\le m-1$ and all sufficiently large $n$, then $f$ is a polynomial. Under suitable assumptions on $s_0,s_1,\dots,s_{m-1}$ and $r_0,\dots,r_{m-1}$, we introduce interpolation polynomials $\Lambda_{nj}$, ($n\ge 0$, $0\le j\le m-1$) satisfying $$ \Lambda_{nj}^{(mk+r_\ell)}(s_\ell)=\delta_{j\ell}\delta_{nk}, \quad\hbox{for}\quad n, k\ge 0 \quad\hbox{and}\quad 0\le j, \ell\le m-1 $$ and we show that any entire function $f$ of sufficiently small exponential type has a convergent expansion $$ f(z)=\sum_{n\ge 0} \sum_{j=0}^{m-1}f^{(mn+r_j)}(s_j)\Lambda_{nj}(z). $$ The case $r_j=j$ for $0\le j\le m-1$ involves successive derivatives $f^{(n)}(w_n)$ of $f$ evaluated at points of a periodic sequence ${\mathbf{w}}=(w_n)_{n\ge 0}$ of complex numbers, where $w_{mh+j}=s_j$ ($h\ge 0$, $0\le j\le m$). More generally, given a bounded (not necessarily periodic) sequence ${\mathbf{w}}=(w_n)_{n\ge 0}$ of complex numbers, we consider similar interpolation formulae $$ f(z)=\sum_{n\ge 0}f^{(n)}(w_n)\Omega_{\mathbf{w},n}(z) $$ involving polynomials $\Omega_{\mathbf{w},n}(z)$ which were introduced by W.~Gontcharoff in 1930. Under suitable assumptions, we show that the hypothesis $f^{(n)}(w_n)\in{\mathbb Z}$ for all sufficiently large $n$ implies that $f$ is a polynomial.
关于具有无穷多个导数在若干点取整数值的超越整函数
设$s_0,s_1,\dots,s_{m-1}$为复数,$r_0,\ddots,r_{m-1}$是在$0\le r_j\le m-1$范围内的有理整数。我们的第一个目标是证明,如果一个足够小的指数型整函数$f$满足$0\le j\le m-1$和所有足够大的$n$的$f^{(mn+r_j)}(s_j)\in{\mathbb Z}$,那么$f$是多项式。在对$s_0,s_1,\dots,s_{m-1}$和$r_0,\ddots,r_{m-1}$的适当假设下,我们引入了插值多项式$\Lambda_{nj}$,并且我们证明了任何足够小的指数型的整函数$f$都具有收敛展开$$f(z)=\sum_{n\ge 0}\sum_^{m-1}f^{(mn+r_j)}(s_j)\Lambda_{nj}(z).$$$0\le j\le m-1$的情况$r_j=j$涉及$f$的连续导数$f^{(n)}(w_n)$,在复数的周期序列${\mathbf{w}}=(w_nn)_{n\ge 0}$的点上进行评估,其中$w_{mh+j}=s_j$($h\ge 0$,$0\le j\le m$)。更一般地说,给定复数的有界(不一定是周期性的)序列${\mathbf{w}}=(w_n)_{n\ge 0}$,我们考虑类似的插值公式$f(z)=\sum_{n\ge 0}f^{(n)}(w_nn)\Omega_{\mathbf{w},n}(z)$$,其涉及由w.~Gontcharoff于1930年引入的多项式$\Omega_。在适当的假设下,我们证明了所有足够大的$n$的假设$f^{(n)}(w_n)\在{\mathbb Z}$中意味着$f$是多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信