Feedback particle filter for collective inference

IF 1.7 Q2 MATHEMATICS, APPLIED
Jin W. Kim, P. Mehta
{"title":"Feedback particle filter for collective inference","authors":"Jin W. Kim, P. Mehta","doi":"10.3934/fods.2021018","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The purpose of this paper is to describe the feedback particle filter algorithm for problems where there are a large number (<inline-formula><tex-math id=\"M1\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula>) of non-interacting agents (targets) with a large number (<inline-formula><tex-math id=\"M2\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula>) of non-agent specific observations (measurements) that originate from these agents. In its basic form, the problem is characterized by data association uncertainty whereby the association between the observations and agents must be deduced in addition to the agent state. In this paper, the large-<inline-formula><tex-math id=\"M3\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula> limit is interpreted as a problem of collective inference. This viewpoint is used to derive the equation for the empirical distribution of the hidden agent states. A feedback particle filter (FPF) algorithm for this problem is presented and illustrated via numerical simulations. Results are presented for the Euclidean and the finite state-space cases, both in continuous-time settings. The classical FPF algorithm is shown to be the special case (with <inline-formula><tex-math id=\"M4\">\\begin{document}$ M = 1 $\\end{document}</tex-math></inline-formula>) of these more general results. The simulations help show that the algorithm well approximates the empirical distribution of the hidden states for large <inline-formula><tex-math id=\"M5\">\\begin{document}$ M $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2021018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

The purpose of this paper is to describe the feedback particle filter algorithm for problems where there are a large number (\begin{document}$ M $\end{document}) of non-interacting agents (targets) with a large number (\begin{document}$ M $\end{document}) of non-agent specific observations (measurements) that originate from these agents. In its basic form, the problem is characterized by data association uncertainty whereby the association between the observations and agents must be deduced in addition to the agent state. In this paper, the large-\begin{document}$ M $\end{document} limit is interpreted as a problem of collective inference. This viewpoint is used to derive the equation for the empirical distribution of the hidden agent states. A feedback particle filter (FPF) algorithm for this problem is presented and illustrated via numerical simulations. Results are presented for the Euclidean and the finite state-space cases, both in continuous-time settings. The classical FPF algorithm is shown to be the special case (with \begin{document}$ M = 1 $\end{document}) of these more general results. The simulations help show that the algorithm well approximates the empirical distribution of the hidden states for large \begin{document}$ M $\end{document}.

用于集体推理的反馈粒子滤波器
The purpose of this paper is to describe the feedback particle filter algorithm for problems where there are a large number (\begin{document}$ M $\end{document}) of non-interacting agents (targets) with a large number (\begin{document}$ M $\end{document}) of non-agent specific observations (measurements) that originate from these agents. In its basic form, the problem is characterized by data association uncertainty whereby the association between the observations and agents must be deduced in addition to the agent state. In this paper, the large-\begin{document}$ M $\end{document} limit is interpreted as a problem of collective inference. This viewpoint is used to derive the equation for the empirical distribution of the hidden agent states. A feedback particle filter (FPF) algorithm for this problem is presented and illustrated via numerical simulations. Results are presented for the Euclidean and the finite state-space cases, both in continuous-time settings. The classical FPF algorithm is shown to be the special case (with \begin{document}$ M = 1 $\end{document}) of these more general results. The simulations help show that the algorithm well approximates the empirical distribution of the hidden states for large \begin{document}$ M $\end{document}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信