{"title":"Equidistribution of saddle connections on translation surfaces","authors":"B. Dozier","doi":"10.3934/JMD.2019004","DOIUrl":null,"url":null,"abstract":"Fix a translation surface $X$, and consider the measures on $X$ coming from averaging the uniform measures on all the saddle connections of length at most $R$. Then as $R\\to\\infty$, the weak limit of these measures exists and is equal to the Lebesgue measure on $X$. We also show that any weak limit of a subsequence of the counting measures on $S^1$ given by the angles of all saddle connections of length at most $R_n$, as $R_n\\to\\infty$, is in the Lebesgue measure class. The proof of the first result uses the second result, together with the result of Kerckhoff-Masur-Smillie that the directional flow on a surface is uniquely ergodic in almost every direction.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JMD.2019004","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13
Abstract
Fix a translation surface $X$, and consider the measures on $X$ coming from averaging the uniform measures on all the saddle connections of length at most $R$. Then as $R\to\infty$, the weak limit of these measures exists and is equal to the Lebesgue measure on $X$. We also show that any weak limit of a subsequence of the counting measures on $S^1$ given by the angles of all saddle connections of length at most $R_n$, as $R_n\to\infty$, is in the Lebesgue measure class. The proof of the first result uses the second result, together with the result of Kerckhoff-Masur-Smillie that the directional flow on a surface is uniquely ergodic in almost every direction.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.