Polygonal multiresolution topology optimization of multi-material structures subjected to dynamic loads

IF 2.7 3区 材料科学 Q2 ENGINEERING, MECHANICAL
Xudong Jiang, Jiaqi Ma, Xiaoyan Teng
{"title":"Polygonal multiresolution topology optimization of multi-material structures subjected to dynamic loads","authors":"Xudong Jiang,&nbsp;Jiaqi Ma,&nbsp;Xiaoyan Teng","doi":"10.1007/s10999-022-09631-8","DOIUrl":null,"url":null,"abstract":"<div><p>Topology optimization of multi-material structures under dynamic loads is implemented to minimizing compliance on polygonal finite element meshes with multiple volume constraints. A multiresolution scheme is introduced to obtain high resolution de-signs for structural dynamics problems with less computational burden. This multiresolution scheme employs a coarse finite element mesh to fulfil the dynamic analysis, a refined density variable mesh for optimization and a density variable mesh overlapping with the density variable mesh for design configuration representation. To obtain the dynamic response, the HHT-α method is employed. A ZPR (Zhang-Paulino-Ramos Jr.) update scheme is used to update the design variables in association to multiple volume constraints by a sensitivity separation technique. Several numerical examples are presented to demonstrate the effectiveness of the method to solve the topology optimization problems for mul-ti-material structures under dynamic loads.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 2","pages":"351 - 373"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-022-09631-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Topology optimization of multi-material structures under dynamic loads is implemented to minimizing compliance on polygonal finite element meshes with multiple volume constraints. A multiresolution scheme is introduced to obtain high resolution de-signs for structural dynamics problems with less computational burden. This multiresolution scheme employs a coarse finite element mesh to fulfil the dynamic analysis, a refined density variable mesh for optimization and a density variable mesh overlapping with the density variable mesh for design configuration representation. To obtain the dynamic response, the HHT-α method is employed. A ZPR (Zhang-Paulino-Ramos Jr.) update scheme is used to update the design variables in association to multiple volume constraints by a sensitivity separation technique. Several numerical examples are presented to demonstrate the effectiveness of the method to solve the topology optimization problems for mul-ti-material structures under dynamic loads.

Abstract Image

动态载荷下多材料结构的多边形多分辨率拓扑优化
在多体积约束的多边形有限元网格上,实现了多材料结构在动载荷作用下的拓扑优化,使柔度最小化。为了在计算量较小的情况下获得结构动力学问题的高分辨率设计,引入了一种多分辨率格式。该多分辨率方案采用粗有限元网格进行动态分析,采用精密度变网格进行优化,采用与密度变网格重叠的密度变网格进行设计构型表示。为了获得动态响应,采用HHT-α方法。采用ZPR (Zhang-Paulino-Ramos Jr.)更新方案,利用灵敏度分离技术对关联于多个体积约束的设计变量进行更新。算例验证了该方法在求解动载荷下多材料结构拓扑优化问题中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanics and Materials in Design
International Journal of Mechanics and Materials in Design ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
6.00
自引率
5.40%
发文量
41
审稿时长
>12 weeks
期刊介绍: It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design. Analytical synopsis of contents: The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design: Intelligent Design: Nano-engineering and Nano-science in Design; Smart Materials and Adaptive Structures in Design; Mechanism(s) Design; Design against Failure; Design for Manufacturing; Design of Ultralight Structures; Design for a Clean Environment; Impact and Crashworthiness; Microelectronic Packaging Systems. Advanced Materials in Design: Newly Engineered Materials; Smart Materials and Adaptive Structures; Micromechanical Modelling of Composites; Damage Characterisation of Advanced/Traditional Materials; Alternative Use of Traditional Materials in Design; Functionally Graded Materials; Failure Analysis: Fatigue and Fracture; Multiscale Modelling Concepts and Methodology; Interfaces, interfacial properties and characterisation. Design Analysis and Optimisation: Shape and Topology Optimisation; Structural Optimisation; Optimisation Algorithms in Design; Nonlinear Mechanics in Design; Novel Numerical Tools in Design; Geometric Modelling and CAD Tools in Design; FEM, BEM and Hybrid Methods; Integrated Computer Aided Design; Computational Failure Analysis; Coupled Thermo-Electro-Mechanical Designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信