The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the L2-subcritical and L2-supercritical cases

IF 3.2 1区 数学 Q1 MATHEMATICS
Quanqing Li, W. Zou
{"title":"The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the L2-subcritical and L2-supercritical cases","authors":"Quanqing Li, W. Zou","doi":"10.1515/anona-2022-0252","DOIUrl":null,"url":null,"abstract":"Abstract This paper is devoted to investigate the existence and multiplicity of the normalized solutions for the following fractional Schrödinger equation: (P) ( − Δ ) s u + λ u = μ ∣ u ∣ p − 2 u + ∣ u ∣ 2 s ∗ − 2 u , x ∈ R N , u > 0 , ∫ R N ∣ u ∣ 2 d x = a 2 , \\left\\{\\begin{array}{l}{\\left(-\\Delta )}^{s}u+\\lambda u=\\mu | u{| }^{p-2}u+| u{| }^{{2}_{s}^{\\ast }-2}u,\\hspace{1em}x\\in {{\\mathbb{R}}}^{N},\\hspace{1.0em}\\\\ u\\gt 0,\\hspace{1em}\\mathop{\\displaystyle \\int }\\limits_{{{\\mathbb{R}}}^{N}}| u{| }^{2}{\\rm{d}}x={a}^{2},\\hspace{1.0em}\\end{array}\\right. where 0 < s < 1 0\\lt s\\lt 1 , a a , μ > 0 \\mu \\gt 0 , N ≥ 2 N\\ge 2 , and 2 < p < 2 s ∗ 2\\lt p\\lt {2}_{s}^{\\ast } . We consider the L 2 {L}^{2} -subcritical and L 2 {L}^{2} -supercritical cases. More precisely, in L 2 {L}^{2} -subcritical case, we obtain the multiplicity of the normalized solutions for problem ( P ) \\left(P) by using the truncation technique, concentration-compactness principle, and genus theory. In L 2 {L}^{2} -supercritical case, we obtain a couple of normalized solution for ( P ) \\left(P) by using a fiber map and concentration-compactness principle. To some extent, these results can be viewed as an extension of the existing results from Sobolev subcritical growth to Sobolev critical growth.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1531 - 1551"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0252","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract This paper is devoted to investigate the existence and multiplicity of the normalized solutions for the following fractional Schrödinger equation: (P) ( − Δ ) s u + λ u = μ ∣ u ∣ p − 2 u + ∣ u ∣ 2 s ∗ − 2 u , x ∈ R N , u > 0 , ∫ R N ∣ u ∣ 2 d x = a 2 , \left\{\begin{array}{l}{\left(-\Delta )}^{s}u+\lambda u=\mu | u{| }^{p-2}u+| u{| }^{{2}_{s}^{\ast }-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{N},\hspace{1.0em}\\ u\gt 0,\hspace{1em}\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}| u{| }^{2}{\rm{d}}x={a}^{2},\hspace{1.0em}\end{array}\right. where 0 < s < 1 0\lt s\lt 1 , a a , μ > 0 \mu \gt 0 , N ≥ 2 N\ge 2 , and 2 < p < 2 s ∗ 2\lt p\lt {2}_{s}^{\ast } . We consider the L 2 {L}^{2} -subcritical and L 2 {L}^{2} -supercritical cases. More precisely, in L 2 {L}^{2} -subcritical case, we obtain the multiplicity of the normalized solutions for problem ( P ) \left(P) by using the truncation technique, concentration-compactness principle, and genus theory. In L 2 {L}^{2} -supercritical case, we obtain a couple of normalized solution for ( P ) \left(P) by using a fiber map and concentration-compactness principle. To some extent, these results can be viewed as an extension of the existing results from Sobolev subcritical growth to Sobolev critical growth.
涉及Sobolev临界指数的分数阶Schrödinger方程在l2 -亚临界和l2 -超临界情况下归一化解的存在性和多重性
摘要本文研究了以下分数阶Schrödinger方程正规化解的存在性和多重性:(P)(−Δ)su+λu=μÜuÜP−2u+ÜuŞ2s*−2u,x∈RN,u>0,ŞRNÜu⁄2dx=a2,\left\{\begin{array}{l}{{\left(-\Delta)}^{s}u+\λu=\mu|u{|}^{p-2}u+|u{|}^{{2}_{s} ^{\sast}-2}u,\space{1em}x\在{\mathbb{R}}^{N},\ hspace{1.0em}\\u}\gt 0,\ hsppace{1em}\mathop{\displaystyle\int}\limits_{{\math bb{R}}}}^{N}| u{|}^}2}{\rm{d}x={a}^{2},\space{1.0em}\end{array}\right。其中0<s<1 0\lt s<1,a,μ>0\mu>0,N≥2 N>2 s*2\lt p\lt{2}_{s} ^{\ast}。我们考虑了L2{L}^{2}-亚临界和L2{L}^}-超临界情况。更确切地说,在L2{L}^{2}-次临界情况下,我们利用截断技术、集中紧致性原理和亏格理论,得到了问题(P)\left(P)的归一化解的多重性。在L2{L}^{2}-超临界情况下,我们利用纤维图和浓度紧致性原理得到了(P)\left(P)的一对归一化解。在某种程度上,这些结果可以被视为现有结果从索博列夫亚临界增长到索博列v临界增长的延伸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信