{"title":"Automated discovery of angle theorems","authors":"Philip Todd","doi":"10.1007/s10472-023-09841-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider geometry theorems whose premises and statement comprise a set of bisector conditions. Each premise and the statement can be represented as the rows of a “bisector matrix”: one with three non zero elements per row, one element with value -2 and the others with value 1. The existence of a theorem corresponds to rank deficiency in this matrix. Our method of theorem discovery starts with identification of rank deficient bisector matrices. Some such matrices can be represented as graphs whose vertices correspond to matrix rows and whose edges correspond to matrix columns. We show that if a bisector matrix which can be represented as a graph is rank deficient, then the graph is bicubic. We give an algorithm for finding the rank deficient matrices for a Hamiltonian bicubic graph, and report on the results for graphs with 6,8,10 and 12 vertices. We discuss a method of deriving rank deficient bisector matrices with more than 2 non-zero elements. We extend the work to matrices containing rows corresponding to angle trisectors.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"91 6","pages":"753 - 778"},"PeriodicalIF":1.2000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10472-023-09841-6.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-023-09841-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
We consider geometry theorems whose premises and statement comprise a set of bisector conditions. Each premise and the statement can be represented as the rows of a “bisector matrix”: one with three non zero elements per row, one element with value -2 and the others with value 1. The existence of a theorem corresponds to rank deficiency in this matrix. Our method of theorem discovery starts with identification of rank deficient bisector matrices. Some such matrices can be represented as graphs whose vertices correspond to matrix rows and whose edges correspond to matrix columns. We show that if a bisector matrix which can be represented as a graph is rank deficient, then the graph is bicubic. We give an algorithm for finding the rank deficient matrices for a Hamiltonian bicubic graph, and report on the results for graphs with 6,8,10 and 12 vertices. We discuss a method of deriving rank deficient bisector matrices with more than 2 non-zero elements. We extend the work to matrices containing rows corresponding to angle trisectors.
期刊介绍:
Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning.
The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors.
Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.