Crowd tracking and monitoring middleware via Map-Reduce

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Alexandros Gazis, E. Katsiri
{"title":"Crowd tracking and monitoring middleware via Map-Reduce","authors":"Alexandros Gazis, E. Katsiri","doi":"10.1080/17445760.2022.2034163","DOIUrl":null,"url":null,"abstract":"This paper presents the design, implementation, and operation of a novel distributed fault-tolerant middleware. It uses interconnected WSNs that implement the Map-Reduce paradigm, consisting of several low-cost and low-power mini-computers (Raspberry Pi). Specifically, we explain the steps for the development of a novice, fault-tolerant Map-Reduce algorithm which achieves high system availability, focusing on network connectivity. Finally, we showcase the use of the proposed system based on simulated data for crowd monitoring in a real case scenario, i.e. a historical building in Greece (M. Hatzidakis’ residence). The technical novelty of this article lies in presenting a viable low-cost and low-power solution for crowd sensing without using complex and resource-intensive AI structures or image/video recognition techniques. GRAPHICAL ABSTRACT","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2022.2034163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the design, implementation, and operation of a novel distributed fault-tolerant middleware. It uses interconnected WSNs that implement the Map-Reduce paradigm, consisting of several low-cost and low-power mini-computers (Raspberry Pi). Specifically, we explain the steps for the development of a novice, fault-tolerant Map-Reduce algorithm which achieves high system availability, focusing on network connectivity. Finally, we showcase the use of the proposed system based on simulated data for crowd monitoring in a real case scenario, i.e. a historical building in Greece (M. Hatzidakis’ residence). The technical novelty of this article lies in presenting a viable low-cost and low-power solution for crowd sensing without using complex and resource-intensive AI structures or image/video recognition techniques. GRAPHICAL ABSTRACT
通过Map Reduce实现人群跟踪和监控中间件
本文介绍了一种新型分布式容错中间件的设计、实现和运行。它使用实现Map-Reduce范式的互连wsn,由几个低成本和低功耗的微型计算机(树莓派)组成。具体来说,我们解释了开发一个新手,容错Map-Reduce算法的步骤,该算法实现了高系统可用性,重点是网络连接。最后,我们展示了基于模拟数据的拟议系统在真实案例场景中的使用,即希腊的一座历史建筑(M. Hatzidakis的住所)。本文的技术新颖之处在于,在不使用复杂和资源密集型的人工智能结构或图像/视频识别技术的情况下,为人群感知提供了一种可行的低成本和低功耗解决方案。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信