{"title":"Crowd tracking and monitoring middleware via Map-Reduce","authors":"Alexandros Gazis, E. Katsiri","doi":"10.1080/17445760.2022.2034163","DOIUrl":null,"url":null,"abstract":"This paper presents the design, implementation, and operation of a novel distributed fault-tolerant middleware. It uses interconnected WSNs that implement the Map-Reduce paradigm, consisting of several low-cost and low-power mini-computers (Raspberry Pi). Specifically, we explain the steps for the development of a novice, fault-tolerant Map-Reduce algorithm which achieves high system availability, focusing on network connectivity. Finally, we showcase the use of the proposed system based on simulated data for crowd monitoring in a real case scenario, i.e. a historical building in Greece (M. Hatzidakis’ residence). The technical novelty of this article lies in presenting a viable low-cost and low-power solution for crowd sensing without using complex and resource-intensive AI structures or image/video recognition techniques. GRAPHICAL ABSTRACT","PeriodicalId":45411,"journal":{"name":"International Journal of Parallel Emergent and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Parallel Emergent and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17445760.2022.2034163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design, implementation, and operation of a novel distributed fault-tolerant middleware. It uses interconnected WSNs that implement the Map-Reduce paradigm, consisting of several low-cost and low-power mini-computers (Raspberry Pi). Specifically, we explain the steps for the development of a novice, fault-tolerant Map-Reduce algorithm which achieves high system availability, focusing on network connectivity. Finally, we showcase the use of the proposed system based on simulated data for crowd monitoring in a real case scenario, i.e. a historical building in Greece (M. Hatzidakis’ residence). The technical novelty of this article lies in presenting a viable low-cost and low-power solution for crowd sensing without using complex and resource-intensive AI structures or image/video recognition techniques. GRAPHICAL ABSTRACT