Power Transmission Network Optimization Strategy Based on Random Fractal Beetle Antenna Algorithm

IF 1.6 Q4 ENERGY & FUELS
Junlei Liu, Zhu Chao, Xiangzhen He, Bo Bao, Xiaowen Lai
{"title":"Power Transmission Network Optimization Strategy Based on Random Fractal Beetle Antenna Algorithm","authors":"Junlei Liu, Zhu Chao, Xiangzhen He, Bo Bao, Xiaowen Lai","doi":"10.1155/2023/5255617","DOIUrl":null,"url":null,"abstract":"In order to optimize the performance of the transmission network (TN), this paper introduces the random fractal search algorithm based on the beetle antenna search algorithm, thus proposing the random fractal beetle antenna algorithm (SFBA). The main work of this research is as follows: (1) in the beetle antenna search algorithm, this study used a population of beetles and introduced elite members of the population in order to make the algorithm more stable and to some extent improve the accuracy of its answers. (2) Utilizing the elite reverse learning method and the leader’s multilearning strategy for elites helps to strike a balance between the global exploration and local development of the algorithm. This strategy also further improves the ability of the algorithm to find the optimal solution. (3) Experiments on real experimental data show that the SFBA algorithm proposed in this paper is effective in improving TN performance. In summary, the research content of this paper provides a good reference value for the performance optimization of TN in actual production.","PeriodicalId":43105,"journal":{"name":"Wireless Power Transfer","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Power Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5255617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to optimize the performance of the transmission network (TN), this paper introduces the random fractal search algorithm based on the beetle antenna search algorithm, thus proposing the random fractal beetle antenna algorithm (SFBA). The main work of this research is as follows: (1) in the beetle antenna search algorithm, this study used a population of beetles and introduced elite members of the population in order to make the algorithm more stable and to some extent improve the accuracy of its answers. (2) Utilizing the elite reverse learning method and the leader’s multilearning strategy for elites helps to strike a balance between the global exploration and local development of the algorithm. This strategy also further improves the ability of the algorithm to find the optimal solution. (3) Experiments on real experimental data show that the SFBA algorithm proposed in this paper is effective in improving TN performance. In summary, the research content of this paper provides a good reference value for the performance optimization of TN in actual production.
基于随机分形甲虫天线算法的输电网优化策略
为了优化传输网络(TN)的性能,本文在甲虫天线搜索算法的基础上引入了随机分形搜索算法,从而提出了随机分形甲虫天线算法(SFBA)。本研究的主要工作如下:(1)在甲虫天线搜索算法中,本研究使用了一个甲虫群体,并引入了该群体的精英成员,以使算法更加稳定,并在一定程度上提高其答案的准确性。(2) 利用精英反向学习方法和领导者对精英的多重学习策略,有助于在算法的全局探索和局部开发之间取得平衡。该策略还进一步提高了算法寻找最优解的能力。(3) 实际实验数据表明,本文提出的SFBA算法在提高TN性能方面是有效的。综上所述,本文的研究内容对TN在实际生产中的性能优化具有很好的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wireless Power Transfer
Wireless Power Transfer ENERGY & FUELS-
CiteScore
2.50
自引率
0.00%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信