Pengjie Gao, Junliang Wang, Min Xia, Zijin Qin, Jie Zhang
{"title":"Dual-Metric Neural Network with Attention Guidance for Surface Defect Few-Shot Detection in Smart Manufacturing","authors":"Pengjie Gao, Junliang Wang, Min Xia, Zijin Qin, Jie Zhang","doi":"10.1115/1.4063356","DOIUrl":null,"url":null,"abstract":"\n As an important application of human-robot collaboration, intelligent detection of surface defects is crucial for production quality control, which also helps in relieving the workload of technical staff in human-centric smart manufacturing. To accurately detect defects with limited samples in industrial practice, a dual-metric neural network with attention guided is proposed. First, an attention-guided recognition network with channel attention and position attention module is designed to efficiently learn representative defect features with limited samples. Second, aiming to detect defects with confusing surface images, a dual-metric function is presented to learn the classification boundary by controlling the distance of samples in feature space from intra-class and inter-class. The experiment results on the fabric defect dataset demonstrate that the proposed approach outperforms state-of-the-art methods in accuracy, recall, precision, F1-score, and few-shot accuracy. Further comparative experiments reveal that the dual-metric function is superior in improving the few-shot detection accuracy for the defect patterns of fabric.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063356","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
As an important application of human-robot collaboration, intelligent detection of surface defects is crucial for production quality control, which also helps in relieving the workload of technical staff in human-centric smart manufacturing. To accurately detect defects with limited samples in industrial practice, a dual-metric neural network with attention guided is proposed. First, an attention-guided recognition network with channel attention and position attention module is designed to efficiently learn representative defect features with limited samples. Second, aiming to detect defects with confusing surface images, a dual-metric function is presented to learn the classification boundary by controlling the distance of samples in feature space from intra-class and inter-class. The experiment results on the fabric defect dataset demonstrate that the proposed approach outperforms state-of-the-art methods in accuracy, recall, precision, F1-score, and few-shot accuracy. Further comparative experiments reveal that the dual-metric function is superior in improving the few-shot detection accuracy for the defect patterns of fabric.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining