Dual-Metric Neural Network with Attention Guidance for Surface Defect Few-Shot Detection in Smart Manufacturing

IF 2.4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Pengjie Gao, Junliang Wang, Min Xia, Zijin Qin, Jie Zhang
{"title":"Dual-Metric Neural Network with Attention Guidance for Surface Defect Few-Shot Detection in Smart Manufacturing","authors":"Pengjie Gao, Junliang Wang, Min Xia, Zijin Qin, Jie Zhang","doi":"10.1115/1.4063356","DOIUrl":null,"url":null,"abstract":"\n As an important application of human-robot collaboration, intelligent detection of surface defects is crucial for production quality control, which also helps in relieving the workload of technical staff in human-centric smart manufacturing. To accurately detect defects with limited samples in industrial practice, a dual-metric neural network with attention guided is proposed. First, an attention-guided recognition network with channel attention and position attention module is designed to efficiently learn representative defect features with limited samples. Second, aiming to detect defects with confusing surface images, a dual-metric function is presented to learn the classification boundary by controlling the distance of samples in feature space from intra-class and inter-class. The experiment results on the fabric defect dataset demonstrate that the proposed approach outperforms state-of-the-art methods in accuracy, recall, precision, F1-score, and few-shot accuracy. Further comparative experiments reveal that the dual-metric function is superior in improving the few-shot detection accuracy for the defect patterns of fabric.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063356","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

As an important application of human-robot collaboration, intelligent detection of surface defects is crucial for production quality control, which also helps in relieving the workload of technical staff in human-centric smart manufacturing. To accurately detect defects with limited samples in industrial practice, a dual-metric neural network with attention guided is proposed. First, an attention-guided recognition network with channel attention and position attention module is designed to efficiently learn representative defect features with limited samples. Second, aiming to detect defects with confusing surface images, a dual-metric function is presented to learn the classification boundary by controlling the distance of samples in feature space from intra-class and inter-class. The experiment results on the fabric defect dataset demonstrate that the proposed approach outperforms state-of-the-art methods in accuracy, recall, precision, F1-score, and few-shot accuracy. Further comparative experiments reveal that the dual-metric function is superior in improving the few-shot detection accuracy for the defect patterns of fabric.
基于注意力引导的双度量神经网络智能制造表面缺陷少弹检测
作为人机协同的重要应用,表面缺陷的智能检测对生产质量控制至关重要,这也有助于减轻以人为中心的智能制造中技术人员的工作量。为了在工业实践中用有限的样本准确地检测缺陷,提出了一种注意力引导的双度量神经网络。首先,设计了一个具有通道注意力和位置注意力模块的注意力引导识别网络,以有效地学习有限样本的代表性缺陷特征。其次,为了检测具有混淆表面图像的缺陷,提出了一种对偶度量函数,通过控制特征空间中样本从类内和类间的距离来学习分类边界。在织物缺陷数据集上的实验结果表明,所提出的方法在准确性、召回率、精度、F1分数和少镜头精度方面优于最先进的方法。进一步的对比实验表明,对偶度量函数在提高织物缺陷图案的少镜头检测精度方面具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
20.00%
发文量
126
审稿时长
12 months
期刊介绍: Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信