Polyethylene Terephthalate/Acryl Butadiene Styrene Copolymer Incorporated with Oak Shell, Potassium Sorbate and Egg Shell Nanoparticles for Food Packaging Applications: Control of Bacteria Growth, Physical and Mechanical Properties
S. Mousavi, S. Hashemi, A. Amani, H. Saed, Sara Jahandideh, Fatemeh Mojoudi
{"title":"Polyethylene Terephthalate/Acryl Butadiene Styrene Copolymer Incorporated with Oak Shell, Potassium Sorbate and Egg Shell Nanoparticles for Food Packaging Applications: Control of Bacteria Growth, Physical and Mechanical Properties","authors":"S. Mousavi, S. Hashemi, A. Amani, H. Saed, Sara Jahandideh, Fatemeh Mojoudi","doi":"10.1177/204124791700800403","DOIUrl":null,"url":null,"abstract":"In this study, the effect of renewable and degradable resources including Oak shell, potassium sorbate and egg shell nanoparticles on the overall properties of polyethylene terephthalate (PET)/acryl butadiene styrene (ABS) were investigated. In this regard, the effect of mentioned additives on the mechanical properties, oxygen permeability, water absorption rate and anti-microbial properties of recycled PET/ABS blend were examined. The results revealed that the addition of ABS to PET can lead to an increase in tensile strength, while it can lead to a decrease in the elongation at break and Young's modulus. Moreover, the addition of Oak shell and potassium sorbate to the PET/ABS mixture can enhance the antimicrobial properties. However, these additives can lead to a significant increase in the water absorption and oxygen permeability within the PET/ABS mixture. On the other hand, reinforcement of PET/ABS with egg shell nanoparticles not only improves the mechanical properties of PET/ABS but also can lead to a decrease in the water absorption and oxygen permeability compared with neat PET/ABS. The main aim of this study is to develop anti-bacterial and degradable plastic structures based on recycled PET/ABS to find a solution for recycling plastic based scraps or improving their natural degradability.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/204124791700800403","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/204124791700800403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 37
Abstract
In this study, the effect of renewable and degradable resources including Oak shell, potassium sorbate and egg shell nanoparticles on the overall properties of polyethylene terephthalate (PET)/acryl butadiene styrene (ABS) were investigated. In this regard, the effect of mentioned additives on the mechanical properties, oxygen permeability, water absorption rate and anti-microbial properties of recycled PET/ABS blend were examined. The results revealed that the addition of ABS to PET can lead to an increase in tensile strength, while it can lead to a decrease in the elongation at break and Young's modulus. Moreover, the addition of Oak shell and potassium sorbate to the PET/ABS mixture can enhance the antimicrobial properties. However, these additives can lead to a significant increase in the water absorption and oxygen permeability within the PET/ABS mixture. On the other hand, reinforcement of PET/ABS with egg shell nanoparticles not only improves the mechanical properties of PET/ABS but also can lead to a decrease in the water absorption and oxygen permeability compared with neat PET/ABS. The main aim of this study is to develop anti-bacterial and degradable plastic structures based on recycled PET/ABS to find a solution for recycling plastic based scraps or improving their natural degradability.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.