A performance-impact based multi-task distributed scheduling algorithm with task removal inference and deadlock avoidance

IF 2 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Jie Li, Runfeng Chen, Chang Wang, Yiting Chen, Yuchong Huang, Xiangke Wang
{"title":"A performance-impact based multi-task distributed scheduling algorithm with task removal inference and deadlock avoidance","authors":"Jie Li,&nbsp;Runfeng Chen,&nbsp;Chang Wang,&nbsp;Yiting Chen,&nbsp;Yuchong Huang,&nbsp;Xiangke Wang","doi":"10.1007/s10458-023-09611-y","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-task distributed scheduling (MTDS) remains a challenging problem for multi-agent systems used for uncertain and dynamic real-world tasks such as search-and-rescue. The Performance Impact (PI) algorithm is an excellent solution for MTDS, but it suffers from the problem of non-convergence that it may fall into an infinite cycle of exchanging the same task. In this paper, we improve the PI algorithm through the integration of a task removal inference strategy and a deadlock avoidance mechanism. Specifically, the task removal inference strategy results in better exploration performance than the original PI, improving the suboptimal solutions caused by the heuristics for local task selection as done in PI. In addition, we design a deadlock avoidance mechanism that limits the number of times of removing the same task and isolating consecutive inclusions of the same task. Therefore, it guarantees the convergence of the MTDS algorithm. We demonstrate the advantage of the proposed algorithm over the original PI algorithm through Monte Carlo simulation of the search-and-rescue task. The results show that the proposed algorithm can obtain a lower average time cost and the highest total allocation number.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10458-023-09611-y.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09611-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-task distributed scheduling (MTDS) remains a challenging problem for multi-agent systems used for uncertain and dynamic real-world tasks such as search-and-rescue. The Performance Impact (PI) algorithm is an excellent solution for MTDS, but it suffers from the problem of non-convergence that it may fall into an infinite cycle of exchanging the same task. In this paper, we improve the PI algorithm through the integration of a task removal inference strategy and a deadlock avoidance mechanism. Specifically, the task removal inference strategy results in better exploration performance than the original PI, improving the suboptimal solutions caused by the heuristics for local task selection as done in PI. In addition, we design a deadlock avoidance mechanism that limits the number of times of removing the same task and isolating consecutive inclusions of the same task. Therefore, it guarantees the convergence of the MTDS algorithm. We demonstrate the advantage of the proposed algorithm over the original PI algorithm through Monte Carlo simulation of the search-and-rescue task. The results show that the proposed algorithm can obtain a lower average time cost and the highest total allocation number.

Abstract Image

一种基于性能影响的多任务分布式调度算法
多任务分布式调度(MTDS)对于用于搜索和救援等不确定和动态现实世界任务的多智能体系统来说仍然是一个具有挑战性的问题。性能影响(PI)算法是MTDS的一个很好的解决方案,但它存在不收敛的问题,可能会陷入交换相同任务的无限循环。在本文中,我们通过集成任务移除推理策略和死锁避免机制来改进PI算法。具体而言,任务移除推理策略比原始PI具有更好的探索性能,改善了由PI中的局部任务选择启发式算法引起的次优解。此外,我们设计了一种死锁避免机制,该机制限制删除同一任务和隔离同一任务的连续包含的次数。因此,它保证了MTDS算法的收敛性。通过对搜救任务的蒙特卡罗模拟,我们展示了所提出的算法相对于原始PI算法的优势。结果表明,该算法可以获得较低的平均时间开销和最高的总分配数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Autonomous Agents and Multi-Agent Systems
Autonomous Agents and Multi-Agent Systems 工程技术-计算机:人工智能
CiteScore
6.00
自引率
5.30%
发文量
48
审稿时长
>12 weeks
期刊介绍: This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to: Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent) Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning. Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems. Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness Significant, novel applications of agent technology Comprehensive reviews and authoritative tutorials of research and practice in agent systems Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信