{"title":"EVALUATING THE ICHNOFOSSIL TEREDOLITES AS AN INDICATOR OF SALINITY AND PALEOENVIRONMENT","authors":"R. Buntin, S. Hasiotis, P. Flaig","doi":"10.2110/palo.2020.074","DOIUrl":null,"url":null,"abstract":"Abstract: The ichnogenus Teredolites and the Teredolites Ichnofacies is an accepted proxy for marine influence in paralic to open marine depositional environments. Actualistic approaches and the process-ichnologic framework allow independent analysis of both quantitative and semiquantitative data to interpret the physicochemical conditions when Teredolites are present. Measurements collected in modern environments and Jurassic–Eocene successions produce a spatially and temporally robust dataset of 14,137 borings from 17 tracemaking genera. Life history strategies of extant tracemakers are reflected in Mesozoic borings, which allow reconstruction of paleosalinity. Trends extrapolated indicate four ecotones in modern paralic to nearshore settings, which can be identified into the Late Cretaceous. These zones display variation in boring metrics (length [L], width [W], L:W ratio, size diversity index), densities, and relative composition of Teredolites. Zone 1 represents upper estuary to tidally modified fluvial successions with salinities from 0.5–10 ppt (oligohaline to alpha-mesohaline). Zone 2 represents upper to central estuary successions with salinities from 10–19 ppt (beta-mesohaline to lower polyhaline). Zone 3 represents central to lower estuary successions with salinities from 15–30 ppt (beta-mesohaline to euhaline). Zone 4 represents backshore to open marine successions with salinities from 20–30+ ppt (polyhaline to euhaline). Boring metrics compared against identified fossil genera suggest high species richness in the Western Interior Seaway coincided with physical adaptations to compensate for interspecific competition––differences in reproduction style and media preferences at the time of settlement––in the Late Cretaceous.","PeriodicalId":54647,"journal":{"name":"Palaios","volume":"37 1","pages":"53 - 72"},"PeriodicalIF":1.5000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaios","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2110/palo.2020.074","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: The ichnogenus Teredolites and the Teredolites Ichnofacies is an accepted proxy for marine influence in paralic to open marine depositional environments. Actualistic approaches and the process-ichnologic framework allow independent analysis of both quantitative and semiquantitative data to interpret the physicochemical conditions when Teredolites are present. Measurements collected in modern environments and Jurassic–Eocene successions produce a spatially and temporally robust dataset of 14,137 borings from 17 tracemaking genera. Life history strategies of extant tracemakers are reflected in Mesozoic borings, which allow reconstruction of paleosalinity. Trends extrapolated indicate four ecotones in modern paralic to nearshore settings, which can be identified into the Late Cretaceous. These zones display variation in boring metrics (length [L], width [W], L:W ratio, size diversity index), densities, and relative composition of Teredolites. Zone 1 represents upper estuary to tidally modified fluvial successions with salinities from 0.5–10 ppt (oligohaline to alpha-mesohaline). Zone 2 represents upper to central estuary successions with salinities from 10–19 ppt (beta-mesohaline to lower polyhaline). Zone 3 represents central to lower estuary successions with salinities from 15–30 ppt (beta-mesohaline to euhaline). Zone 4 represents backshore to open marine successions with salinities from 20–30+ ppt (polyhaline to euhaline). Boring metrics compared against identified fossil genera suggest high species richness in the Western Interior Seaway coincided with physical adaptations to compensate for interspecific competition––differences in reproduction style and media preferences at the time of settlement––in the Late Cretaceous.
期刊介绍:
PALAIOS is a monthly journal, founded in 1986, dedicated to emphasizing the impact of life on Earth''s history as recorded in the paleontological and sedimentological records. PALAIOS disseminates information to an international spectrum of geologists and biologists interested in a broad range of topics, including, but not limited to, biogeochemistry, ichnology, paleoclimatology, paleoecology, paleoceanography, sedimentology, stratigraphy, geomicrobiology, paleobiogeochemistry, and astrobiology.
PALAIOS publishes original papers that emphasize using paleontology to answer important geological and biological questions that further our understanding of Earth history. Accordingly, manuscripts whose subject matter and conclusions have broader geologic implications are much more likely to be selected for publication. Given that the purpose of PALAIOS is to generate enthusiasm for paleontology among a broad spectrum of readers, the editors request the following: titles that generate immediate interest; abstracts that emphasize important conclusions; illustrations of professional caliber used in place of words; and lively, yet scholarly, text.