Dynamical analysis of a reaction–diffusion mosquito-borne model in a spatially heterogeneous environment

IF 3.2 1区 数学 Q1 MATHEMATICS
Jinliang Wang, W. Wu, Chunyang Li
{"title":"Dynamical analysis of a reaction–diffusion mosquito-borne model in a spatially heterogeneous environment","authors":"Jinliang Wang, W. Wu, Chunyang Li","doi":"10.1515/anona-2022-0295","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we formulate and perform a strict analysis of a reaction–diffusion mosquito-borne disease model with total human populations stabilizing at H(x) in a spatially heterogeneous environment. By utilizing some fundamental theories of the dynamical system, we establish the threshold-type results of the model relying on the basic reproduction number. Specifically, we explore the mutual impacts of the spatial heterogeneity and diffusion coefficients on the basic reproduction number and investigate the existence, uniqueness, and global attractivity of the nontrivial steady state by utilizing the arguments of asymptotically autonomous semiflows. For the case that all parameters are independent of space, the global attractivity of the nontrivial steady state is achieved by the Lyapunov function.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0295","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this article, we formulate and perform a strict analysis of a reaction–diffusion mosquito-borne disease model with total human populations stabilizing at H(x) in a spatially heterogeneous environment. By utilizing some fundamental theories of the dynamical system, we establish the threshold-type results of the model relying on the basic reproduction number. Specifically, we explore the mutual impacts of the spatial heterogeneity and diffusion coefficients on the basic reproduction number and investigate the existence, uniqueness, and global attractivity of the nontrivial steady state by utilizing the arguments of asymptotically autonomous semiflows. For the case that all parameters are independent of space, the global attractivity of the nontrivial steady state is achieved by the Lyapunov function.
空间异质环境下反应-扩散蚊媒模式的动力学分析
摘要在本文中,我们建立了一个反应-扩散蚊媒疾病模型,并对其进行了严格的分析,该模型在空间异质环境中总人口稳定在H(x)。利用动力系统的一些基本理论,建立了基于基本再生数的模型的阈值型结果。具体而言,我们利用渐近自治半流的自变量,探讨了空间异质性和扩散系数对基本繁殖数的相互影响,并研究了非平凡稳态的存在性、唯一性和全局吸引性。对于所有参数都独立于空间的情况,通过李雅普诺夫函数实现了非平凡稳态的全局吸引性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信