J. Asafu-Adjei, M. Tadesse, B. Coull, R. Balasubramanian, M. Lev, L. Schwamm, R. Betensky
{"title":"Bayesian Variable Selection Methods for Matched Case-Control Studies","authors":"J. Asafu-Adjei, M. Tadesse, B. Coull, R. Balasubramanian, M. Lev, L. Schwamm, R. Betensky","doi":"10.1515/ijb-2016-0043","DOIUrl":null,"url":null,"abstract":"Abstract Matched case-control designs are currently used in many biomedical applications. To ensure high efficiency and statistical power in identifying features that best discriminate cases from controls, it is important to account for the use of matched designs. However, in the setting of high dimensional data, few variable selection methods account for matching. Bayesian approaches to variable selection have several advantages, including the fact that such approaches visit a wider range of model subsets. In this paper, we propose a variable selection method to account for case-control matching in a Bayesian context and apply it using simulation studies, a matched brain imaging study conducted at Massachusetts General Hospital, and a matched cardiovascular biomarker study conducted by the High Risk Plaque Initiative.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2016-0043","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2016-0043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract Matched case-control designs are currently used in many biomedical applications. To ensure high efficiency and statistical power in identifying features that best discriminate cases from controls, it is important to account for the use of matched designs. However, in the setting of high dimensional data, few variable selection methods account for matching. Bayesian approaches to variable selection have several advantages, including the fact that such approaches visit a wider range of model subsets. In this paper, we propose a variable selection method to account for case-control matching in a Bayesian context and apply it using simulation studies, a matched brain imaging study conducted at Massachusetts General Hospital, and a matched cardiovascular biomarker study conducted by the High Risk Plaque Initiative.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.