The exact annihilating-ideal graph of a commutative ring

Q3 Mathematics
S. Visweswaran, P. T. Lalchandani
{"title":"The exact annihilating-ideal graph of a commutative ring","authors":"S. Visweswaran, P. T. Lalchandani","doi":"10.13069/JACODESMATH.938105","DOIUrl":null,"url":null,"abstract":"The rings considered in this article are commutative with identity. For an ideal $I$ of a ring $R$, we denote the annihilator of $I$ in $R$ by $Ann(I)$. An ideal $I$ of a ring $R$ is said to be an exact annihilating ideal if there exists a non-zero ideal $J$ of $R$ such that $Ann(I) = J$ and $Ann(J) = I$. For a ring $R$, we denote the set of all exact annihilating ideals of $R$ by $\\mathbb{EA}(R)$ and $\\mathbb{EA}(R)\\backslash \\{(0)\\}$ by $\\mathbb{EA}(R)^{*}$. Let $R$ be a ring such that $\\mathbb{EA}(R)^{*}\\neq \\emptyset$. With $R$, in [Exact Annihilating-ideal graph of commutative rings, {\\it J. Algebra and Related Topics} {\\bf 5}(1) (2017) 27-33] P.T. Lalchandani introduced and investigated an undirected graph called the exact annihilating-ideal graph of $R$, denoted by $\\mathbb{EAG}(R)$ whose vertex set is $\\mathbb{EA}(R)^{*}$ and distinct vertices $I$ and $J$ are adjacent if and only if $Ann(I) = J$ and $Ann(J) = I$. In this article, we continue the study of the exact annihilating-ideal graph of a ring. In Section 2 , we prove some basic properties of exact annihilating ideals of a commutative ring and we provide several examples. In Section 3, we determine the structure of $\\mathbb{EAG}(R)$, where either $R$ is a special principal ideal ring or $R$ is a reduced ring which admits only a finite number of minimal prime ideals.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.938105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

The rings considered in this article are commutative with identity. For an ideal $I$ of a ring $R$, we denote the annihilator of $I$ in $R$ by $Ann(I)$. An ideal $I$ of a ring $R$ is said to be an exact annihilating ideal if there exists a non-zero ideal $J$ of $R$ such that $Ann(I) = J$ and $Ann(J) = I$. For a ring $R$, we denote the set of all exact annihilating ideals of $R$ by $\mathbb{EA}(R)$ and $\mathbb{EA}(R)\backslash \{(0)\}$ by $\mathbb{EA}(R)^{*}$. Let $R$ be a ring such that $\mathbb{EA}(R)^{*}\neq \emptyset$. With $R$, in [Exact Annihilating-ideal graph of commutative rings, {\it J. Algebra and Related Topics} {\bf 5}(1) (2017) 27-33] P.T. Lalchandani introduced and investigated an undirected graph called the exact annihilating-ideal graph of $R$, denoted by $\mathbb{EAG}(R)$ whose vertex set is $\mathbb{EA}(R)^{*}$ and distinct vertices $I$ and $J$ are adjacent if and only if $Ann(I) = J$ and $Ann(J) = I$. In this article, we continue the study of the exact annihilating-ideal graph of a ring. In Section 2 , we prove some basic properties of exact annihilating ideals of a commutative ring and we provide several examples. In Section 3, we determine the structure of $\mathbb{EAG}(R)$, where either $R$ is a special principal ideal ring or $R$ is a reduced ring which admits only a finite number of minimal prime ideals.
交换环的完全湮灭理想图
本文中考虑的环是具有恒等式的可交换环。对于环R$的理想$I$,我们用$Ann(I)$表示R$中$I$的湮灭子。如果存在R$的非零理想$J$,使得$Ann(I) = J$和$Ann(J) = I$,则环$R$的理想$I$是一个精确湮灭理想。对于环$R$,我们用$\mathbb{EA}(R)$和$\mathbb{EA}(R)\反斜杠\{(0)\}$表示$\mathbb{EA}(R)^{*}$表示$R$的所有完全湮灭理想的集合。设$R$是一个环,使得$\mathbb{EA}(R)^{*}\neq \emptyset$。P.T. Lalchandani在[交换环的精确湮灭理想图]{\it J.代数与相关话题}{\bf 5}(1)(2017) 27-33]中引入并研究了一个称为$R$的精确湮灭理想图的无向图,表示为$\mathbb{EAG}(R)$,其顶点集为$\mathbb{EA}(R)^{*}$,且不同的顶点$I$和$J$相邻当且仅当$Ann(I) = J$和$Ann(J) = I$。在本文中,我们继续研究环的精确湮灭-理想图。在第二节中,我们证明了交换环的精确湮灭理想的一些基本性质,并给出了几个例子。在第三节中,我们确定了$\mathbb{EAG}(R)$的结构,其中$R$是一个特殊的主理想环,或者$R$是一个只允许有限个最小素数理想的约简环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信