ASYMPTOTIC NORMALITY OF TRIMMED L-MOMENTS ESTIMATOR FOR ARCHIMEDEAN COPULAS

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES
Idiou Nesrine, Benatia Fatah
{"title":"ASYMPTOTIC NORMALITY OF TRIMMED L-MOMENTS ESTIMATOR FOR ARCHIMEDEAN COPULAS","authors":"Idiou Nesrine, Benatia Fatah","doi":"10.46939/j.sci.arts-23.1-a12","DOIUrl":null,"url":null,"abstract":"In order to present a new estimation approach for multi-parameter distributions without a mean or for heavy tailed distributions, in which the L-moments method proposed by Gumbel, (1960), is invalid due to the absence of theoretical L-moments, Trimmed L-moments were first introduced by Elamir and Seheult (2003). In this paper, a new estimation method based on multi-parameter copulas' Trimmed L-moments is proposed with a simulation study. The consistency and the asymptotic normality of the new estimator also established.","PeriodicalId":54169,"journal":{"name":"Journal of Science and Arts","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46939/j.sci.arts-23.1-a12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In order to present a new estimation approach for multi-parameter distributions without a mean or for heavy tailed distributions, in which the L-moments method proposed by Gumbel, (1960), is invalid due to the absence of theoretical L-moments, Trimmed L-moments were first introduced by Elamir and Seheult (2003). In this paper, a new estimation method based on multi-parameter copulas' Trimmed L-moments is proposed with a simulation study. The consistency and the asymptotic normality of the new estimator also established.
阿基米德联结的修剪l矩估计量的渐近正态性
针对Gumbel(1960)提出的l -矩方法由于缺乏理论l -矩而失效的无均值多参数分布或重尾分布,为了提出一种新的估计方法,Elamir和Seheult(2003)首先引入了trim l -矩。本文通过仿真研究,提出了一种基于多参数copula裁剪l矩的估计方法。并证明了新估计量的相合性和渐近正态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Science and Arts
Journal of Science and Arts MULTIDISCIPLINARY SCIENCES-
自引率
25.00%
发文量
57
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信