Dynamical analysis of the transmission of dengue fever via Caputo-Fabrizio fractional derivative

Q1 Mathematics
Salah Boulaaras , Rashid Jan , Amin Khan , Muhammad Ahsan
{"title":"Dynamical analysis of the transmission of dengue fever via Caputo-Fabrizio fractional derivative","authors":"Salah Boulaaras ,&nbsp;Rashid Jan ,&nbsp;Amin Khan ,&nbsp;Muhammad Ahsan","doi":"10.1016/j.csfx.2022.100072","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we develop a sophisticated mathematical model for dengue transmission dynamics based on vaccination, reinfection and carrier class assumptions. We utilize Caputo-Fabrizio fractional framework to represent the transmission phenomena of dengue. For the model analysis, the basic theory and findings of the Caputo-Fabrizio fractional operator are provided. We utilize the next-generation approach to calculate the threshold parameter <span><math><msub><mi>R</mi><mn>0</mn></msub></math></span> for our proposed dengue infection model. We have shown that the disease-free steady-state of the hypothesized dengue system is locally asymptotically stable if <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span> and is unstable in other conditions. The reproduction number of the system of dengue infection is investigated numerically. Furthermore, under the Caputo-Fabrizio approach, we offer a numerical approach for solving our fractional-order problem. We obtain the solution pathways of our system with various values of fractional-order <span><math><mi>ϑ</mi></math></span> and other input values in order to illustrate the effects of fractional-order <span><math><mi>ϑ</mi></math></span> and other input values on our system. Based on our findings, we forecast the most essential system factors for eradicating dengue infections.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"8 ","pages":"Article 100072"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054422000021/pdfft?md5=fdac609f7a514e3f22b62622d671e4d4&pid=1-s2.0-S2590054422000021-main.pdf","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054422000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 21

Abstract

In this work, we develop a sophisticated mathematical model for dengue transmission dynamics based on vaccination, reinfection and carrier class assumptions. We utilize Caputo-Fabrizio fractional framework to represent the transmission phenomena of dengue. For the model analysis, the basic theory and findings of the Caputo-Fabrizio fractional operator are provided. We utilize the next-generation approach to calculate the threshold parameter R0 for our proposed dengue infection model. We have shown that the disease-free steady-state of the hypothesized dengue system is locally asymptotically stable if R0<1 and is unstable in other conditions. The reproduction number of the system of dengue infection is investigated numerically. Furthermore, under the Caputo-Fabrizio approach, we offer a numerical approach for solving our fractional-order problem. We obtain the solution pathways of our system with various values of fractional-order ϑ and other input values in order to illustrate the effects of fractional-order ϑ and other input values on our system. Based on our findings, we forecast the most essential system factors for eradicating dengue infections.

登革热经Caputo-Fabrizio分数阶导数传播的动力学分析
在这项工作中,我们基于疫苗接种、再感染和载体类别假设,开发了登革热传播动力学的复杂数学模型。我们利用Caputo-Fabrizio分数框架来表示登革热的传播现象。在模型分析中,给出了Caputo-Fabrizio分数算子的基本理论和研究结果。我们利用下一代方法来计算我们提出的登革热感染模型的阈值参数R0。我们已经证明,如果R0<1,假设登革热系统的无病稳态是局部渐近稳定的,而在其他条件下是不稳定的。对登革热感染系统的繁殖数量进行了数值研究。此外,在Caputo-Fabrizio方法下,我们提供了一个数值方法来解决我们的分数阶问题。我们得到了系统在不同分数阶ν和其他输入值下的解路径,以说明分数阶ν和其他输入值对系统的影响。根据我们的研究结果,我们预测了根除登革热感染最重要的系统因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信