Existence of local and global solution for a spatio-temporal predator-prey model

Q2 Multidisciplinary
Ricardo Cano-Macias, Jorge Mauricio Ruiz-Vera
{"title":"Existence of local and global solution for a spatio-temporal predator-prey model","authors":"Ricardo Cano-Macias, Jorge Mauricio Ruiz-Vera","doi":"10.11144/javeriana.sc24-3.eola","DOIUrl":null,"url":null,"abstract":"In this paper we prove the existence and uniqueness of weak solutions for a kind of Lotka–Volterra system, by using successive linearization techniques. This approach has the advantage to treat two equations separately in each iteration step. Under suitable initial conditions, we construct an invariant region to show the global existence in time of solutions for the system. By means of Sobolev embeddings and regularity results, we find estimates for predator and prey populations in adequate norms. In order to demonstrate the convergence properties of the introduced method, several numerical examples are given.","PeriodicalId":39200,"journal":{"name":"Universitas Scientiarum","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universitas Scientiarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11144/javeriana.sc24-3.eola","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove the existence and uniqueness of weak solutions for a kind of Lotka–Volterra system, by using successive linearization techniques. This approach has the advantage to treat two equations separately in each iteration step. Under suitable initial conditions, we construct an invariant region to show the global existence in time of solutions for the system. By means of Sobolev embeddings and regularity results, we find estimates for predator and prey populations in adequate norms. In order to demonstrate the convergence properties of the introduced method, several numerical examples are given.
一类时空捕食者-猎物模型的局部解和全局解的存在性
本文利用连续线性化技术证明了一类Lotka-Volterra系统弱解的存在唯一性。这种方法的优点是在每个迭代步骤中分别处理两个方程。在适当的初始条件下,构造了一个不变区域来证明系统解在时间上的全局存在性。通过Sobolev嵌入和正则性结果,我们找到了捕食者和猎物种群在适当规范下的估计。为了证明该方法的收敛性,给出了几个数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Universitas Scientiarum
Universitas Scientiarum Multidisciplinary-Multidisciplinary
CiteScore
1.20
自引率
0.00%
发文量
9
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信