N. V. Makolkin, E. A. Paukshtis, V. V. Kaichev, A. P. Suknev, B. S. Bal’zhinimaev, H. U. Kim, J. Jae
{"title":"Key Intermediates in the Hydrogenation of Carboxylic Acids on the Pt–ReOx/TiO2 Catalyst","authors":"N. V. Makolkin, E. A. Paukshtis, V. V. Kaichev, A. P. Suknev, B. S. Bal’zhinimaev, H. U. Kim, J. Jae","doi":"10.1134/S2070050422040079","DOIUrl":null,"url":null,"abstract":"<p>The reactivity of adsorbed acetic acid forms on the Pt–ReO<sub><i>x</i></sub>/TiO<sub>2</sub> catalyst has been studied. Three adsorbed acetic acid forms were identified by in situ Fourier IR spectroscopy at 200°С: bidentate acetates and two forms of molecularly adsorbed acetic acid. The consumption rate constants two forms of molecularly adsorbed acetic acid (0.02 and 0.029 s<sup>–1</sup>, respectively) were found to be close in magnitude to the catalytic reaction constant rate (0.034 s<sup>–1</sup>) measured at 200°С. It was concluded that these two forms of molecularly adsorbed acetic acid are key intermediates in acetic acid hydrogenation on the Pt–ReO<sub><i>x</i></sub>/TiO<sub>2</sub> catalyst.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"14 4","pages":"336 - 342"},"PeriodicalIF":0.7000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050422040079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The reactivity of adsorbed acetic acid forms on the Pt–ReOx/TiO2 catalyst has been studied. Three adsorbed acetic acid forms were identified by in situ Fourier IR spectroscopy at 200°С: bidentate acetates and two forms of molecularly adsorbed acetic acid. The consumption rate constants two forms of molecularly adsorbed acetic acid (0.02 and 0.029 s–1, respectively) were found to be close in magnitude to the catalytic reaction constant rate (0.034 s–1) measured at 200°С. It was concluded that these two forms of molecularly adsorbed acetic acid are key intermediates in acetic acid hydrogenation on the Pt–ReOx/TiO2 catalyst.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.