{"title":"Detection of Water Leaks in Suburban Distribution Mains with Lift and Shift Vibro-Acoustic Sensors","authors":"Lili Bykerk, Jaime Valls Miro","doi":"10.3390/vibration5020021","DOIUrl":null,"url":null,"abstract":"Leaks in Water Distribution Networks (WDNs) account for a large proportion of Non-Revenue Water (NRW) for utilities worldwide. Typically, a leak is only confirmed once water surfaces, allowing the leak to be traced; however, a high percentage of leaks may never surface, incurring large water losses and costs for utilities. Active Leak Detection (ALD) methods can be used to detect hidden leaks; however, the success of such methods is highly dependent on the available detection instrumentation and the experience of the operator. To aid in the detection of both hidden and surfacing leaks, deployment of vibro-acoustic sensors is being increasingly explored by water utilities for temporary structural health monitoring. In this paper, data were collected and curated from a range of temporary Lift and Shift (L&S) vibro-acoustic sensor deployments across suburban Sydney. Time-frequency and frequency-domain features were generated to assess the performance and suitability of two state-of-the-art binary classification models for water leak detection. The results drawn from the extensive field data sets are shown to provide reliable leak detection outcomes, with accuracies of at least 97% and low false positive rates. Through the use of such a reliable leak detection system, utilities can streamline their leak detection and repair processes, effectively mitigating NRW and reducing customer disruptions.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vibration5020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Leaks in Water Distribution Networks (WDNs) account for a large proportion of Non-Revenue Water (NRW) for utilities worldwide. Typically, a leak is only confirmed once water surfaces, allowing the leak to be traced; however, a high percentage of leaks may never surface, incurring large water losses and costs for utilities. Active Leak Detection (ALD) methods can be used to detect hidden leaks; however, the success of such methods is highly dependent on the available detection instrumentation and the experience of the operator. To aid in the detection of both hidden and surfacing leaks, deployment of vibro-acoustic sensors is being increasingly explored by water utilities for temporary structural health monitoring. In this paper, data were collected and curated from a range of temporary Lift and Shift (L&S) vibro-acoustic sensor deployments across suburban Sydney. Time-frequency and frequency-domain features were generated to assess the performance and suitability of two state-of-the-art binary classification models for water leak detection. The results drawn from the extensive field data sets are shown to provide reliable leak detection outcomes, with accuracies of at least 97% and low false positive rates. Through the use of such a reliable leak detection system, utilities can streamline their leak detection and repair processes, effectively mitigating NRW and reducing customer disruptions.