{"title":"Magnetically Recyclable Ag@Fe2O3 Core-shell Nanostructured Catalyst for One-pot Synthesis of 2-Aryl Benzimidazole and Benzothiazole","authors":"Gayatree Shinde, Jyotsna Thakur","doi":"10.2174/2213337209666220329125047","DOIUrl":null,"url":null,"abstract":"\n\nNanocatalysts exhibit several applications in the synthesis of many industrially important organic compounds. They manifest extremely fascinating physical and chemical properties which can be exploited in their catalytic applications.\n\n\n\nA magnetically recyclable Ag@Fe2O3 core-shell structured nanocatalyst was synthesized by a simple sol-gel technique and characterized by x-ray diffraction spectroscopy, field emission scanning electron microscope, high-resolution transmission electron microscopy, fourier transform infrared spectroscopy, vibrating sample magnetometer etc. Nanocatalyst was found to be a highly efficient heterogeneous catalyst for the synthesis of 2-aryl benzimidazoles and benzothiazoles via one-pot condensation of aromatic aldehydes and 1, 2-phenylenediamine, and 2-aminothiophenol.\n\n\n\nAg@Fe2O3 nanocatalyst provides rapid conversion of the substrate into the desired product at room temperature within just 5-18 min in the presence of C2H5OH with good to excellent yield. The combination of Ag core with magnetic Fe2O3 shell results in improved efficiency, stability, magnetic recovery, and reusability compare to the individual nanoparticles.\n\n\n\nThe synthetic protocol is featured with high yield, mild conditions, and simple work-up. Magnetic recovery of the catalyst from reaction systems and its reusability for several runs without loss of catalytic activity are additional advantages.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337209666220329125047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Nanocatalysts exhibit several applications in the synthesis of many industrially important organic compounds. They manifest extremely fascinating physical and chemical properties which can be exploited in their catalytic applications.
A magnetically recyclable Ag@Fe2O3 core-shell structured nanocatalyst was synthesized by a simple sol-gel technique and characterized by x-ray diffraction spectroscopy, field emission scanning electron microscope, high-resolution transmission electron microscopy, fourier transform infrared spectroscopy, vibrating sample magnetometer etc. Nanocatalyst was found to be a highly efficient heterogeneous catalyst for the synthesis of 2-aryl benzimidazoles and benzothiazoles via one-pot condensation of aromatic aldehydes and 1, 2-phenylenediamine, and 2-aminothiophenol.
Ag@Fe2O3 nanocatalyst provides rapid conversion of the substrate into the desired product at room temperature within just 5-18 min in the presence of C2H5OH with good to excellent yield. The combination of Ag core with magnetic Fe2O3 shell results in improved efficiency, stability, magnetic recovery, and reusability compare to the individual nanoparticles.
The synthetic protocol is featured with high yield, mild conditions, and simple work-up. Magnetic recovery of the catalyst from reaction systems and its reusability for several runs without loss of catalytic activity are additional advantages.
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.