{"title":"Htex","authors":"Wilhem Barbier, J. Dupuy","doi":"10.1145/3543868","DOIUrl":null,"url":null,"abstract":"We introduce per-halfedge texturing (Htex) a GPU-friendly method for texturing arbitrary polygon-meshes without an explicit parameterization. Htex builds upon the insight that halfedges encode an intrinsic triangulation for polygon meshes, where each halfedge spans a unique triangle with direct adjacency information. Rather than storing a separate texture per face of the input mesh as is done by previous parameterization-free texturing methods, Htex stores a square texture for each halfedge and its twin. We show that this simple change from face to halfedge induces two important properties for high performance parameterization-free texturing. First, Htex natively supports arbitrary polygons without requiring dedicated code for, e.g, non-quad faces. Second, Htex leads to a straightforward and efficient GPU implementation that uses only three texture-fetches per halfedge to produce continuous texturing across the entire mesh. We demonstrate the effectiveness of Htex by rendering production assets in real time.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"5 1","pages":"1 - 14"},"PeriodicalIF":1.4000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce per-halfedge texturing (Htex) a GPU-friendly method for texturing arbitrary polygon-meshes without an explicit parameterization. Htex builds upon the insight that halfedges encode an intrinsic triangulation for polygon meshes, where each halfedge spans a unique triangle with direct adjacency information. Rather than storing a separate texture per face of the input mesh as is done by previous parameterization-free texturing methods, Htex stores a square texture for each halfedge and its twin. We show that this simple change from face to halfedge induces two important properties for high performance parameterization-free texturing. First, Htex natively supports arbitrary polygons without requiring dedicated code for, e.g, non-quad faces. Second, Htex leads to a straightforward and efficient GPU implementation that uses only three texture-fetches per halfedge to produce continuous texturing across the entire mesh. We demonstrate the effectiveness of Htex by rendering production assets in real time.