Jakob Lassa, Magnus Egede Boggild, P. Hedegaard, K. Lefmann
{"title":"Multinomial, Poisson and Gaussian statistics in count data analysis","authors":"Jakob Lassa, Magnus Egede Boggild, P. Hedegaard, K. Lefmann","doi":"10.3233/jnr-190145","DOIUrl":null,"url":null,"abstract":"It is generally known that counting statistics is not correctly described by a Gaussian approximation. Nevertheless, in neutron scattering, it is common practice to apply this approximation to the counting statistics; also at low counting numbers. We show that the application of this approximation leads to skewed results not only for low-count features, such as background level estimation, but also for its estimation at double-digit count numbers. In effect, this approximation is shown to be imprecise on all levels of count. Instead, a Multinomial approach is introduced as well as a more standard Poisson method, which we compare with the Gaussian case. These two methods originate from a proper analysis of a multi-detector setup and a standard triple axis instrument. We devise a simple mathematical procedure to produce unbiased fits using the Multinomial distribution and demonstrate this method on synthetic and actual inelastic scattering data. We find that the Multinomial method provide almost unbiased results, and in some cases outperforms the Poisson statistics. Although significantly biased, the Gaussian approach is in general more robust in cases where the fitted model is not a true representation of reality. For this reason, a proper data analysis toolbox for low-count neutron scattering should therefore contain more than one model for counting statistics.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/jnr-190145","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-190145","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
It is generally known that counting statistics is not correctly described by a Gaussian approximation. Nevertheless, in neutron scattering, it is common practice to apply this approximation to the counting statistics; also at low counting numbers. We show that the application of this approximation leads to skewed results not only for low-count features, such as background level estimation, but also for its estimation at double-digit count numbers. In effect, this approximation is shown to be imprecise on all levels of count. Instead, a Multinomial approach is introduced as well as a more standard Poisson method, which we compare with the Gaussian case. These two methods originate from a proper analysis of a multi-detector setup and a standard triple axis instrument. We devise a simple mathematical procedure to produce unbiased fits using the Multinomial distribution and demonstrate this method on synthetic and actual inelastic scattering data. We find that the Multinomial method provide almost unbiased results, and in some cases outperforms the Poisson statistics. Although significantly biased, the Gaussian approach is in general more robust in cases where the fitted model is not a true representation of reality. For this reason, a proper data analysis toolbox for low-count neutron scattering should therefore contain more than one model for counting statistics.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.