Mapping uncertain spatial object extents from point samples using fuzzy alpha-shapes

IF 1.8 Q2 GEOGRAPHY
T. Etherington
{"title":"Mapping uncertain spatial object extents from point samples using fuzzy alpha-shapes","authors":"T. Etherington","doi":"10.5311/josis.2023.26.254","DOIUrl":null,"url":null,"abstract":"Mapping the extent of spatial objects from point samples is a fundamental process in geographical analysis. Computational geometry methods are commonly used, and one method that has been proposed is the alpha-shape as it is insensitive to both bias and errors that are common in crowdsourced geographic data and big geographic data more generally. However, many spatial objects are uncertain in nature, with vague boundaries that are not well represented by the current use of discrete alpha-shapes. Fuzzy alpha-shapes are presented as a highly generic and adaptable methodology that can produce maps of spatial objects that recognise the vague and uncertain nature of many geographies. A series of virtual geography experiments demonstrate that fuzzy alpha-shapes avoid the need for binary thresholds, create a model that better represents the uncertain boundaries of some spatial objects, while also retaining the robustness to errors and bias that motivated the original use of alpha-shapes for mapping spatial objects.","PeriodicalId":45389,"journal":{"name":"Journal of Spatial Information Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spatial Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5311/josis.2023.26.254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 1

Abstract

Mapping the extent of spatial objects from point samples is a fundamental process in geographical analysis. Computational geometry methods are commonly used, and one method that has been proposed is the alpha-shape as it is insensitive to both bias and errors that are common in crowdsourced geographic data and big geographic data more generally. However, many spatial objects are uncertain in nature, with vague boundaries that are not well represented by the current use of discrete alpha-shapes. Fuzzy alpha-shapes are presented as a highly generic and adaptable methodology that can produce maps of spatial objects that recognise the vague and uncertain nature of many geographies. A series of virtual geography experiments demonstrate that fuzzy alpha-shapes avoid the need for binary thresholds, create a model that better represents the uncertain boundaries of some spatial objects, while also retaining the robustness to errors and bias that motivated the original use of alpha-shapes for mapping spatial objects.
使用模糊alpha形状从点样本映射不确定的空间对象范围
从点样中绘制空间目标的范围是地理分析的一个基本过程。计算几何方法是常用的,其中一种已被提出的方法是alpha-shape,因为它对众包地理数据和更普遍的大地理数据中常见的偏差和错误不敏感。然而,许多空间对象在本质上是不确定的,其模糊的边界不能很好地由当前使用的离散alpha形状表示。模糊alpha形状是一种高度通用和适应性强的方法,可以生成识别许多地理位置模糊和不确定性质的空间物体地图。一系列虚拟地理实验表明,模糊alpha-形状避免了对二值阈值的需要,创建了一个更好地代表某些空间对象的不确定边界的模型,同时还保留了对误差和偏差的鲁棒性,这促使最初使用alpha-形状来映射空间对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
5
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信