{"title":"A Combined Unmixing Framework for Impervious Surface Mapping on Medium-Resolution Images with Visible Shadows","authors":"Hui Luo, N. Chen","doi":"10.14358/PERS.87.6.431","DOIUrl":null,"url":null,"abstract":"Spectral unmixing methods with medium-resolution remote sensing images have become the main approach to mapping urban impervious-surface information. However, as more tall buildings appear, numerous visible shadows exist in medium-resolution images; these have usually been ignored in\n previous research, but they seriously affect accuracy. To solve this problem, we propose a combined unmixing framework to extract impervious surface in nonshadow and shadow areas, using linear and nonlinear unmixing models, respectively. First shadow is separated from nonshadow. Then a nonlinear\n unmixing method is selected to map impervious surface in shadow, which is more suitable to the complex imaging environment in shadow, and a classic linear unmixing model in nonshadow. Through experimental tests, the proposed combined unmixing framework is shown to effectively reduce error\n in two study areas compared with classical unmixing methods.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"87 1","pages":"431-443"},"PeriodicalIF":1.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/PERS.87.6.431","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Spectral unmixing methods with medium-resolution remote sensing images have become the main approach to mapping urban impervious-surface information. However, as more tall buildings appear, numerous visible shadows exist in medium-resolution images; these have usually been ignored in
previous research, but they seriously affect accuracy. To solve this problem, we propose a combined unmixing framework to extract impervious surface in nonshadow and shadow areas, using linear and nonlinear unmixing models, respectively. First shadow is separated from nonshadow. Then a nonlinear
unmixing method is selected to map impervious surface in shadow, which is more suitable to the complex imaging environment in shadow, and a classic linear unmixing model in nonshadow. Through experimental tests, the proposed combined unmixing framework is shown to effectively reduce error
in two study areas compared with classical unmixing methods.
期刊介绍:
Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers.
We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.