A Theory of Entanglement

Q1 Arts and Humanities
Quanta Pub Date : 2019-04-13 DOI:10.12743/quanta.v9i1.115
S. Gudder
{"title":"A Theory of Entanglement","authors":"S. Gudder","doi":"10.12743/quanta.v9i1.115","DOIUrl":null,"url":null,"abstract":"This article presents the basis of a theory of entanglement. We begin with a classical theory of entangled discrete measures. Then, we treat quantum mechanics and discuss the statistics of bounded operators on a Hilbert space in terms of context coefficients. Finally, we combine both topics to develop a general theory of entanglement for quantum states. A measure of entanglement called the entanglement number is introduced. Although this number is related to entanglement robustness, its motivation is not the same and there are some differences. The present article only involves bipartite systems and we leave the study of multipartite systems for later work.Quanta 2020; 9: 7–15.","PeriodicalId":37613,"journal":{"name":"Quanta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quanta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12743/quanta.v9i1.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 9

Abstract

This article presents the basis of a theory of entanglement. We begin with a classical theory of entangled discrete measures. Then, we treat quantum mechanics and discuss the statistics of bounded operators on a Hilbert space in terms of context coefficients. Finally, we combine both topics to develop a general theory of entanglement for quantum states. A measure of entanglement called the entanglement number is introduced. Although this number is related to entanglement robustness, its motivation is not the same and there are some differences. The present article only involves bipartite systems and we leave the study of multipartite systems for later work.Quanta 2020; 9: 7–15.
纠缠理论
本文提出了纠缠理论的基础。我们从纠缠离散测度的经典理论开始。然后,我们讨论了量子力学,并用上下文系数讨论了Hilbert空间上有界算子的统计。最后,我们将这两个主题结合起来,发展了量子态纠缠的一般理论。引入了一种称为纠缠数的纠缠度量。尽管这个数字与纠缠鲁棒性有关,但其动机并不相同,也存在一些差异。本文只涉及二部分系统,我们将多部分系统的研究留给以后的工作。广达2020;9:7-15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quanta
Quanta Arts and Humanities-History and Philosophy of Science
CiteScore
1.30
自引率
0.00%
发文量
5
审稿时长
12 weeks
期刊介绍: Quanta is an open access academic journal publishing original research and review articles on foundations of quantum mechanics, mathematical physics and philosophy of science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信