Study on ice adhesion of composite anti-/deicing component under heating condition

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Yishu Zhang, Long Chen, Hui Liu
{"title":"Study on ice adhesion of composite anti-/deicing component under heating condition","authors":"Yishu Zhang, Long Chen, Hui Liu","doi":"10.1177/2633366X20912440","DOIUrl":null,"url":null,"abstract":"An anti-/deicing component of composite materials for wind turbine blades is usually carried out under heating conditions. In order to study the ice adhesion properties of composite anti-/deicing component under heating conditions, an experimental platform for measuring ice adhesion force on composites was set up. Based on the heating parameters such as the heating temperature, heating voltage, and heating time, the experiments of ice adhesion of composite anti-/deicing component under deicing conditions were designed by orthogonal analysis. In this article, ice adhesion forces on composite anti-/deicing component were measured at −9.74°C, −11.58°C, −14.1°C, and −16.84°C by the proposed experiment platform, and the real ice adhesion forces under various heating parameters were measured. Through the analysis of experimental data and fitting method, the relationship between various factors and ice adhesion on composite anti-/deicing component was expounded. The influence weight of each heating parameter on the ice adhesion was analyzed. In addition, the mathematical model of ice adhesion on composite anti-/deicing component under deicing condition was established to describe the influence of deicing variables on ice adhesion in the experiments. According to the fitting function of the experimental data, the relationship between the heat consumption of composite anti-/deicing component and ice adhesion force in the process of heating is in accordance with the inverse power exponential expression, which reveals the internal relationship between ice adhesion force and energy consumption.","PeriodicalId":55551,"journal":{"name":"Advanced Composites Letters","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2633366X20912440","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2633366X20912440","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 3

Abstract

An anti-/deicing component of composite materials for wind turbine blades is usually carried out under heating conditions. In order to study the ice adhesion properties of composite anti-/deicing component under heating conditions, an experimental platform for measuring ice adhesion force on composites was set up. Based on the heating parameters such as the heating temperature, heating voltage, and heating time, the experiments of ice adhesion of composite anti-/deicing component under deicing conditions were designed by orthogonal analysis. In this article, ice adhesion forces on composite anti-/deicing component were measured at −9.74°C, −11.58°C, −14.1°C, and −16.84°C by the proposed experiment platform, and the real ice adhesion forces under various heating parameters were measured. Through the analysis of experimental data and fitting method, the relationship between various factors and ice adhesion on composite anti-/deicing component was expounded. The influence weight of each heating parameter on the ice adhesion was analyzed. In addition, the mathematical model of ice adhesion on composite anti-/deicing component under deicing condition was established to describe the influence of deicing variables on ice adhesion in the experiments. According to the fitting function of the experimental data, the relationship between the heat consumption of composite anti-/deicing component and ice adhesion force in the process of heating is in accordance with the inverse power exponential expression, which reveals the internal relationship between ice adhesion force and energy consumption.
加热条件下复合防冰/除冰构件的粘冰性能研究
用于风力涡轮机叶片的复合材料的防冰/除冰部件通常在加热条件下进行。为了研究复合防冰/除冰构件在加热条件下的附着冰性能,建立了一个测量复合材料附着冰力的实验平台。基于加热温度、加热电压和加热时间等加热参数,采用正交分析法设计了复合防冰/除冰构件在除冰条件下的附着冰实验。在本文中,利用所提出的实验平台,在−9.74°C、−11.58°C、–14.1°C和−16.84°C下测量了复合防冰/除冰部件上的冰粘附力,并测量了不同加热参数下的真实冰粘附力。通过对实验数据的分析和拟合方法,阐述了各种因素与复合防冰构件结冰性能的关系。分析了各加热参数对冰粘附力的影响权重。此外,还建立了除冰条件下复合防冰部件附着冰的数学模型,以描述实验中除冰变量对附着冰的影响。根据实验数据的拟合函数,复合防冰/除冰部件在加热过程中的热耗与冰附着力之间的关系符合逆幂指数表达式,揭示了冰附着力与能耗之间的内在关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Composites Letters
Advanced Composites Letters 工程技术-材料科学:复合
自引率
0.00%
发文量
0
审稿时长
4.2 months
期刊介绍: Advanced Composites Letters is a peer reviewed, open access journal publishing research which focuses on the field of science and engineering of advanced composite materials or structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信