Solitary waves and excited states for Boson stars

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Melgaard, F. Zongo
{"title":"Solitary waves and excited states for Boson stars","authors":"M. Melgaard, F. Zongo","doi":"10.1142/s0219530521500147","DOIUrl":null,"url":null,"abstract":"We study the nonlinear, nonlocal, time-dependent partial differential equation [Formula: see text] which is known to describe the dynamics of quasi-relativistic boson stars in the mean-field limit. For positive mass parameter [Formula: see text] we establish existence of infinitely many (corresponding to distinct energies [Formula: see text]) traveling solitary waves, [Formula: see text], with speed [Formula: see text], where [Formula: see text] corresponds to the speed of light in our choice of units. These traveling solitary waves cannot be obtained by applying a Lorentz boost to a solitary wave at rest (with [Formula: see text]) because Lorentz covariance fails. Instead, we study a suitable variational problem for which the functions [Formula: see text] arise as solutions (called boosted excited states) to a Choquard-type equation in [Formula: see text], where the negative Laplacian is replaced by the pseudo-differential operator [Formula: see text] and an additional term [Formula: see text] enters. Moreover, we give a new proof for existence of boosted ground states. The results are based on perturbation methods in critical point theory.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530521500147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the nonlinear, nonlocal, time-dependent partial differential equation [Formula: see text] which is known to describe the dynamics of quasi-relativistic boson stars in the mean-field limit. For positive mass parameter [Formula: see text] we establish existence of infinitely many (corresponding to distinct energies [Formula: see text]) traveling solitary waves, [Formula: see text], with speed [Formula: see text], where [Formula: see text] corresponds to the speed of light in our choice of units. These traveling solitary waves cannot be obtained by applying a Lorentz boost to a solitary wave at rest (with [Formula: see text]) because Lorentz covariance fails. Instead, we study a suitable variational problem for which the functions [Formula: see text] arise as solutions (called boosted excited states) to a Choquard-type equation in [Formula: see text], where the negative Laplacian is replaced by the pseudo-differential operator [Formula: see text] and an additional term [Formula: see text] enters. Moreover, we give a new proof for existence of boosted ground states. The results are based on perturbation methods in critical point theory.
玻色子星的孤立波和激发态
我们研究了在平均场极限下描述准相对论玻色子星动力学的非线性、非局部、时变偏微分方程[公式:见文本]。对于正的质量参数[公式:见文],我们建立了无限多个(对应于不同的能量[公式:见文])旅行的孤立波的存在,[公式:见文],速度[公式:见文],其中[公式:见文]对应于我们选择的单位中的光速。这些行进的孤立波不能通过对静止的孤立波施加洛伦兹升力来获得(用[公式:见文本]),因为洛伦兹协方差失效了。相反,我们研究了一个合适的变分问题,其中函数[公式:见文]作为[公式:见文]中一个choquard型方程的解(称为提升激发态)出现,其中负拉普拉斯算子被伪微分算子[公式:见文]所取代,并进入一个附加项[公式:见文]。此外,我们还给出了增强基态存在的一个新的证明。结果基于临界点理论中的摄动方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信