MATRIX RESOLVING FUNCTIONS IN THE LINEAR GROUP PURSUIT PROBLEM WITH FRACTIONAL DERIVATIVES

Q3 Mathematics
A. I. Machtakova, N. Petrov
{"title":"MATRIX RESOLVING FUNCTIONS IN THE LINEAR GROUP PURSUIT PROBLEM WITH FRACTIONAL DERIVATIVES","authors":"A. I. Machtakova, N. Petrov","doi":"10.15826/umj.2022.1.008","DOIUrl":null,"url":null,"abstract":"In finite-dimensional Euclidean space, we analyze the problem of pursuit of a single evader by a group of pursuers, which is described by a system of differential equations with Caputo fractional derivatives of order \\(alpha.\\) The goal of the group of pursuers is the capture of the evader by at least \\(m\\) different pursuers (the instants of capture may or may not coincide). As a mathematical basis, we use matrix resolving functions that are generalizations of scalar resolving functions. We obtain sufficient conditions for multiple capture of a single evader in the class of quasi-strategies. We give examples illustrating the results obtained.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2022.1.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In finite-dimensional Euclidean space, we analyze the problem of pursuit of a single evader by a group of pursuers, which is described by a system of differential equations with Caputo fractional derivatives of order \(alpha.\) The goal of the group of pursuers is the capture of the evader by at least \(m\) different pursuers (the instants of capture may or may not coincide). As a mathematical basis, we use matrix resolving functions that are generalizations of scalar resolving functions. We obtain sufficient conditions for multiple capture of a single evader in the class of quasi-strategies. We give examples illustrating the results obtained.
分数阶导数线性群寻迹问题中的矩阵求解函数
在有限维欧几里得空间中,我们分析了一组追踪者追逐单个逃避者的问题,该问题用一个阶为\(alpha.\)卡普托分数阶导数的微分方程组来描述。追踪者群的目标是被至少\(m\)个不同的追踪者捕获(捕获的瞬间可能同时发生,也可能不同时发生)。作为数学基础,我们使用矩阵解析函数,它是标量解析函数的推广。在拟策略类中,得到了单个逃避者多次捕获的充分条件。我们给出了实例来说明所得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信