Metal-organic framework DUT-67 (Zr) for adsorptive removal of trace Hg2+ and CH3Hg+ in water

Q3 Chemical Engineering
Sha Chen, Fan Feng, Sumei Li, Xiao-Xin Li, Lun Shu
{"title":"Metal-organic framework DUT-67 (Zr) for adsorptive removal of trace Hg2+ and CH3Hg+ in water","authors":"Sha Chen, Fan Feng, Sumei Li, Xiao-Xin Li, Lun Shu","doi":"10.1080/09542299.2018.1509020","DOIUrl":null,"url":null,"abstract":"ABSTRACT A Zr-based stable metal-organic frameworks DUT-67 (Zr) was successfully synthesized as an adsorbent to remove trace mercury and methylmercury ions in aqueous solution. The removal efficiency of 90% and 55% of Hg2+ and CH3Hg+ was respectively achieved at pH 6 and 55°C. The S in thiophene has a relatively weak adsorption capacity for mercury and there could be the slight π-complexation between thiophere ring of DUT-67 (Zr) and Hg2+ besides physical absorption, while there only was physical adsorption between DUT-67 (Zr) and CH3Hg+. The developed methods were applied to remove trace Hg2+ and CH3Hg+ in the real water samples, and the removal efficiency was from 69% to 90% and from 30% to 77% respectively; when the concentrations of Hg2+ was lower than 20 μg L−1 in the samples, the remaining mercury concentration was lower than 1 μg L−1,which can meet the standard of the World Health Organization.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"30 1","pages":"106 - 99"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2018.1509020","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2018.1509020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 18

Abstract

ABSTRACT A Zr-based stable metal-organic frameworks DUT-67 (Zr) was successfully synthesized as an adsorbent to remove trace mercury and methylmercury ions in aqueous solution. The removal efficiency of 90% and 55% of Hg2+ and CH3Hg+ was respectively achieved at pH 6 and 55°C. The S in thiophene has a relatively weak adsorption capacity for mercury and there could be the slight π-complexation between thiophere ring of DUT-67 (Zr) and Hg2+ besides physical absorption, while there only was physical adsorption between DUT-67 (Zr) and CH3Hg+. The developed methods were applied to remove trace Hg2+ and CH3Hg+ in the real water samples, and the removal efficiency was from 69% to 90% and from 30% to 77% respectively; when the concentrations of Hg2+ was lower than 20 μg L−1 in the samples, the remaining mercury concentration was lower than 1 μg L−1,which can meet the standard of the World Health Organization.
金属有机骨架DUT-67 (Zr)吸附去除水中痕量Hg2+和CH3Hg+
摘要成功合成了一种锆基稳定金属有机骨架DUT-67(Zr),作为去除水溶液中痕量汞和甲基汞离子的吸附剂。在pH 6和55°C下,Hg2+和CH3Hg+的去除率分别达到90%和55%。噻吩中的S对汞的吸附能力相对较弱,除了物理吸附外,DUT-67(Zr)的硫环与Hg2+之间可能存在轻微的π-络合,而DUT-67与CH3Hg+之间仅存在物理吸附。将所开发的方法应用于实际水样中痕量Hg2+和CH3Hg+的去除,去除率分别为69%至90%和30%至77%;当样品中Hg2+浓度低于20μg L−1时,剩余汞浓度低于1μg L–1,可以满足世界卫生组织的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.62
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences. Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”: Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques. Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products. Mobility of substance species in environment and biota, either spatially or temporally. Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions. Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances. Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity. Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信