Rancangan Sistem Klasifikasi Kekurangan Gizi Balita Dengan Metode K-Nearest Neighbor

Syahrani Lonang, A. Yudhana, M. K. Biddinika
{"title":"Rancangan Sistem Klasifikasi Kekurangan Gizi Balita Dengan Metode K-Nearest Neighbor","authors":"Syahrani Lonang, A. Yudhana, M. K. Biddinika","doi":"10.36499/jinrpl.v5i1.7834","DOIUrl":null,"url":null,"abstract":" Malnutrition in toddlers is a serious problem faced by developing countries like Indonesia, and the resulting long-term effects can reduce the intelligence of toddlers. The classification of the nutritional status of children under five is still carried out conventionally in community health centers. The K-Nearest Neighbor algorithm is included in a machine learning algorithm that can be used to classify one of the nutritional status classification problems. K-NN is used as a class determination algorithm for new data to be input according to the format. This research begins with a literature study, then identifies needs, followed by data collection that is planned to be used in the system to be built as well as a reference for making the design and the final stage of system design. This research succeeded in creating a system design using the Unified Model Language (UML), one use case that contains four functional systems, including uploading dataset files, displaying datasets, testing the accuracy of datasets, predicting new data, and designing system interfaces that will make system development easier..","PeriodicalId":33961,"journal":{"name":"Jurnal Informatika dan Rekayasa Perangkat Lunak","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika dan Rekayasa Perangkat Lunak","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36499/jinrpl.v5i1.7834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

 Malnutrition in toddlers is a serious problem faced by developing countries like Indonesia, and the resulting long-term effects can reduce the intelligence of toddlers. The classification of the nutritional status of children under five is still carried out conventionally in community health centers. The K-Nearest Neighbor algorithm is included in a machine learning algorithm that can be used to classify one of the nutritional status classification problems. K-NN is used as a class determination algorithm for new data to be input according to the format. This research begins with a literature study, then identifies needs, followed by data collection that is planned to be used in the system to be built as well as a reference for making the design and the final stage of system design. This research succeeded in creating a system design using the Unified Model Language (UML), one use case that contains four functional systems, including uploading dataset files, displaying datasets, testing the accuracy of datasets, predicting new data, and designing system interfaces that will make system development easier..
用K-近邻法设计平衡评级系统
幼儿营养不良是印度尼西亚等发展中国家面临的一个严重问题,由此产生的长期影响会降低幼儿的智力。五岁以下儿童营养状况的分类仍按惯例在社区卫生中心进行。K-最近邻算法包含在机器学习算法中,该算法可用于对营养状况分类问题之一进行分类。K-NN被用作根据格式输入的新数据的类别确定算法。本研究从文献研究开始,然后确定需求,然后收集计划用于待构建系统的数据,并为设计和系统设计的最后阶段提供参考。这项研究成功地使用统一模型语言(UML)创建了一个系统设计,该用例包含四个功能系统,包括上传数据集文件、显示数据集、测试数据集的准确性、预测新数据以及设计使系统开发更容易的系统接口。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信