{"title":"Fractal scaling and crack-size effects on creep crack growth","authors":"A. Carpinteri, G. Niccolini, A. Rubino","doi":"10.3233/sfc-200260","DOIUrl":null,"url":null,"abstract":"Scaling effects on the creep crack growth behaviour are investigated by analyzing the results of compact tension (CT) tests on different-sized notched steel specimens appearing in the literature. Creep crack growth rate data are correlated to the elastic stress-intensity factor in terms of a Paris-type law, da∕dt = C0Kq, where C0 turns out to be a crack-size dependent coefficient of proportionality. Considering specimens with the same loading configuration (CT) and the same thickness, the observed crack-size effect on the creep crack growth rate is discussed on the basis of self-similarity considerations, and geometrically interpreted in terms of fractal tortuosity of the crack profile. A size-independent formulation of the creep crack growth law correlating renormalized quantities is finally deduced and confirmed by the experimental results.","PeriodicalId":41486,"journal":{"name":"Strength Fracture and Complexity","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/sfc-200260","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength Fracture and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/sfc-200260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1
Abstract
Scaling effects on the creep crack growth behaviour are investigated by analyzing the results of compact tension (CT) tests on different-sized notched steel specimens appearing in the literature. Creep crack growth rate data are correlated to the elastic stress-intensity factor in terms of a Paris-type law, da∕dt = C0Kq, where C0 turns out to be a crack-size dependent coefficient of proportionality. Considering specimens with the same loading configuration (CT) and the same thickness, the observed crack-size effect on the creep crack growth rate is discussed on the basis of self-similarity considerations, and geometrically interpreted in terms of fractal tortuosity of the crack profile. A size-independent formulation of the creep crack growth law correlating renormalized quantities is finally deduced and confirmed by the experimental results.
期刊介绍:
Strength, Fracture and Complexity: An International Journal is devoted to solve the strength and fracture unifiedly in non linear and systematised manner as complexity system. An attempt is welcome to challenge to get the clue to a new paradigm or to studies by fusing nano, meso microstructural, continuum and large scaling approach. The concept, theoretical and/or experimental, respectively are/is welcome. On the other hand the presentation of the knowledge-based data for the aims is welcome, being useful for the knowledge-based accumulation. Also, deformation and fracture in geophysics and geotechnology may be another one of interesting subjects, for instance, in relation to earthquake science and engineering.