An inertial parallel CQ subgradient extragradient method for variational inequalities application to signal-image recovery

Q1 Mathematics
Ponkamon Kitisak, W. Cholamjiak, D. Yambangwai
{"title":"An inertial parallel CQ subgradient extragradient method for variational inequalities application to signal-image recovery","authors":"Ponkamon Kitisak, W. Cholamjiak, D. Yambangwai","doi":"10.53006/rna.960559","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an inertial parallel CQ subgradient extragradient method for (cid:28)nding a common solutions of variational inequality problems. The novelty of this paper is using linesearch methods to (cid:28)nd unknown L constant of L -Lipschitz continuous mappings. Strong convergence theorem has been proved under some suitable conditions in Hilbert spaces. Finally, we show applications to signal and image recovery, and show the good e(cid:30)ciency of our proposed algorithm when the number of subproblems is increasing","PeriodicalId":36205,"journal":{"name":"Results in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53006/rna.960559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduce an inertial parallel CQ subgradient extragradient method for (cid:28)nding a common solutions of variational inequality problems. The novelty of this paper is using linesearch methods to (cid:28)nd unknown L constant of L -Lipschitz continuous mappings. Strong convergence theorem has been proved under some suitable conditions in Hilbert spaces. Finally, we show applications to signal and image recovery, and show the good e(cid:30)ciency of our proposed algorithm when the number of subproblems is increasing
一种用于变分不等式的惯性平行CQ次梯度法在信号图像恢复中的应用
本文介绍了一种求解变分不等式问题(cid:28)的惯性并行CQ次梯度超梯度方法。本文的新颖之处在于利用线性搜索方法对L-Lipschitz连续映射的未知L常数(cid:28)进行了求解。在Hilbert空间中的一些适当条件下证明了强收敛定理。最后,我们展示了在信号和图像恢复中的应用,并展示了当子问题数量增加时,我们提出的算法的良好效率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Nonlinear Analysis
Results in Nonlinear Analysis Mathematics-Mathematics (miscellaneous)
CiteScore
1.60
自引率
0.00%
发文量
34
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信