{"title":"A mathematical assessment of the efficiency of quarantining and contact tracing in curbing the COVID-19 epidemic","authors":"A. Lambert","doi":"10.1051/mmnp/2021042","DOIUrl":null,"url":null,"abstract":"In our model of the COVID-19 epidemic, infected individuals can be of four types, according whether they are asymptomatic ($A$) or symptomatic ($I$), and use a contact tracing mobile phone app ($Y$) or not ($N$). We denote by $f$ the fraction of $A$'s, by $y$ the fraction of $Y$'s and by $R_0$ the average number of secondary infections from a random infected individual.\nWe investigate the effect of non-digital interventions and of digital interventions, depending on the willingness to quarantine, parameterized by four cooperating probabilities.\nFor a given `effective' $R_0$ obtained with non-digital interventions, we use non-negative matrix theory and stopping line techniques to characterize mathematically the minimal fraction $y_0$ of app users needed to curb the epidemic. We show that under a wide range of scenarios, the threshold $y_0$ as a function of $R_0$ rises steeply from 0 at $R_0=1$ to prohibitively large values (of the order of $60-70\\%$ up) whenever $R_0$ is above 1.3. Our results show that moderate rates of adoption of a contact tracing app can reduce $R_0$ but are by no means sufficient to reduce it below 1 unless it is already very close to 1 thanks to non-digital interventions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2021042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 9
Abstract
In our model of the COVID-19 epidemic, infected individuals can be of four types, according whether they are asymptomatic ($A$) or symptomatic ($I$), and use a contact tracing mobile phone app ($Y$) or not ($N$). We denote by $f$ the fraction of $A$'s, by $y$ the fraction of $Y$'s and by $R_0$ the average number of secondary infections from a random infected individual.
We investigate the effect of non-digital interventions and of digital interventions, depending on the willingness to quarantine, parameterized by four cooperating probabilities.
For a given `effective' $R_0$ obtained with non-digital interventions, we use non-negative matrix theory and stopping line techniques to characterize mathematically the minimal fraction $y_0$ of app users needed to curb the epidemic. We show that under a wide range of scenarios, the threshold $y_0$ as a function of $R_0$ rises steeply from 0 at $R_0=1$ to prohibitively large values (of the order of $60-70\%$ up) whenever $R_0$ is above 1.3. Our results show that moderate rates of adoption of a contact tracing app can reduce $R_0$ but are by no means sufficient to reduce it below 1 unless it is already very close to 1 thanks to non-digital interventions.