{"title":"A mathematical assessment of the efficiency of quarantining and contact tracing in curbing the COVID-19 epidemic","authors":"A. Lambert","doi":"10.1051/mmnp/2021042","DOIUrl":null,"url":null,"abstract":"In our model of the COVID-19 epidemic, infected individuals can be of four types, according whether they are asymptomatic ($A$) or symptomatic ($I$), and use a contact tracing mobile phone app ($Y$) or not ($N$). We denote by $f$ the fraction of $A$'s, by $y$ the fraction of $Y$'s and by $R_0$ the average number of secondary infections from a random infected individual.\nWe investigate the effect of non-digital interventions and of digital interventions, depending on the willingness to quarantine, parameterized by four cooperating probabilities.\nFor a given `effective' $R_0$ obtained with non-digital interventions, we use non-negative matrix theory and stopping line techniques to characterize mathematically the minimal fraction $y_0$ of app users needed to curb the epidemic. We show that under a wide range of scenarios, the threshold $y_0$ as a function of $R_0$ rises steeply from 0 at $R_0=1$ to prohibitively large values (of the order of $60-70\\%$ up) whenever $R_0$ is above 1.3. Our results show that moderate rates of adoption of a contact tracing app can reduce $R_0$ but are by no means sufficient to reduce it below 1 unless it is already very close to 1 thanks to non-digital interventions.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2021042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
In our model of the COVID-19 epidemic, infected individuals can be of four types, according whether they are asymptomatic ($A$) or symptomatic ($I$), and use a contact tracing mobile phone app ($Y$) or not ($N$). We denote by $f$ the fraction of $A$'s, by $y$ the fraction of $Y$'s and by $R_0$ the average number of secondary infections from a random infected individual.
We investigate the effect of non-digital interventions and of digital interventions, depending on the willingness to quarantine, parameterized by four cooperating probabilities.
For a given `effective' $R_0$ obtained with non-digital interventions, we use non-negative matrix theory and stopping line techniques to characterize mathematically the minimal fraction $y_0$ of app users needed to curb the epidemic. We show that under a wide range of scenarios, the threshold $y_0$ as a function of $R_0$ rises steeply from 0 at $R_0=1$ to prohibitively large values (of the order of $60-70\%$ up) whenever $R_0$ is above 1.3. Our results show that moderate rates of adoption of a contact tracing app can reduce $R_0$ but are by no means sufficient to reduce it below 1 unless it is already very close to 1 thanks to non-digital interventions.
期刊介绍:
The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues.
Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.