Marked colimits and higher cofinality

Pub Date : 2021-12-16 DOI:10.1007/s40062-021-00296-2
Fernando Abellán García
{"title":"Marked colimits and higher cofinality","authors":"Fernando Abellán García","doi":"10.1007/s40062-021-00296-2","DOIUrl":null,"url":null,"abstract":"<div><p>Given a marked <span>\\(\\infty \\)</span>-category <span>\\(\\mathcal {D}^{\\dagger }\\)</span> (i.e. an <span>\\(\\infty \\)</span>-category equipped with a specified collection of morphisms) and a functor <span>\\(F: \\mathcal {D}\\rightarrow {\\mathbb {B}}\\)</span> with values in an <span>\\(\\infty \\)</span>-bicategory, we define <img>, the marked colimit of <i>F</i>. We provide a definition of weighted colimits in <span>\\(\\infty \\)</span>-bicategories when the indexing diagram is an <span>\\(\\infty \\)</span>-category and show that they can be computed in terms of marked colimits. In the maximally marked case <span>\\(\\mathcal {D}^{\\sharp }\\)</span>, our construction retrieves the <span>\\(\\infty \\)</span>-categorical colimit of <i>F</i> in the underlying <span>\\(\\infty \\)</span>-category <span>\\(\\mathcal {B}\\subseteq {\\mathbb {B}}\\)</span>. In the specific case when <img>, the <span>\\(\\infty \\)</span>-bicategory of <span>\\(\\infty \\)</span>-categories and <span>\\(\\mathcal {D}^{\\flat }\\)</span> is minimally marked, we recover the definition of lax colimit of Gepner–Haugseng–Nikolaus. We show that a suitable <span>\\(\\infty \\)</span>-localization of the associated coCartesian fibration <span>\\({\\text {Un}}_{\\mathcal {D}}(F)\\)</span> computes <img>. Our main theorem is a characterization of those functors of marked <span>\\(\\infty \\)</span>-categories <span>\\({f:\\mathcal {C}^{\\dagger } \\rightarrow \\mathcal {D}^{\\dagger }}\\)</span> which are marked cofinal. More precisely, we provide sufficient and necessary criteria for the restriction of diagrams along <i>f</i> to preserve marked colimits</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-021-00296-2.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00296-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given a marked \(\infty \)-category \(\mathcal {D}^{\dagger }\) (i.e. an \(\infty \)-category equipped with a specified collection of morphisms) and a functor \(F: \mathcal {D}\rightarrow {\mathbb {B}}\) with values in an \(\infty \)-bicategory, we define , the marked colimit of F. We provide a definition of weighted colimits in \(\infty \)-bicategories when the indexing diagram is an \(\infty \)-category and show that they can be computed in terms of marked colimits. In the maximally marked case \(\mathcal {D}^{\sharp }\), our construction retrieves the \(\infty \)-categorical colimit of F in the underlying \(\infty \)-category \(\mathcal {B}\subseteq {\mathbb {B}}\). In the specific case when , the \(\infty \)-bicategory of \(\infty \)-categories and \(\mathcal {D}^{\flat }\) is minimally marked, we recover the definition of lax colimit of Gepner–Haugseng–Nikolaus. We show that a suitable \(\infty \)-localization of the associated coCartesian fibration \({\text {Un}}_{\mathcal {D}}(F)\) computes . Our main theorem is a characterization of those functors of marked \(\infty \)-categories \({f:\mathcal {C}^{\dagger } \rightarrow \mathcal {D}^{\dagger }}\) which are marked cofinal. More precisely, we provide sufficient and necessary criteria for the restriction of diagrams along f to preserve marked colimits

Abstract Image

分享
查看原文
界限明显,共通性高
给定一个有标记的\(\infty \) -类别\(\mathcal {D}^{\dagger }\)(即一个具有指定的态射集合的\(\infty \) -类别)和一个具有\(\infty \) -双类别值的函子\(F: \mathcal {D}\rightarrow {\mathbb {B}}\),我们定义了f的标记极限。我们给出了当索引图是\(\infty \) -类别时,\(\infty \) -双类别中加权极限的定义,并表明它们可以用标记极限来计算。在标记最多的情况\(\mathcal {D}^{\sharp }\)中,我们的构造检索底层\(\infty \) -类别\(\mathcal {B}\subseteq {\mathbb {B}}\)中F的\(\infty \) -分类极限。在特定情况下,当\(\infty \) -categories和\(\mathcal {D}^{\flat }\) - biccategory的\(\infty \) -标记最小时,我们恢复了gepner - haugssen - nikolaus的松弛极限定义。我们证明了一个合适的\(\infty \) -定位相关联的笛卡儿纤曲\({\text {Un}}_{\mathcal {D}}(F)\)计算。我们的主要定理是对标记为共终的\(\infty \) -类别\({f:\mathcal {C}^{\dagger } \rightarrow \mathcal {D}^{\dagger }}\)的函子的刻画。更准确地说,我们提供了足够和必要的标准来限制沿f的图,以保持标记的边界
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信