Yonghua Yu , Xiaosong An , Jiahao Lin , Shanjun Li , Yaohui Chen
{"title":"A vision system based on CNN-LSTM for robotic citrus sorting","authors":"Yonghua Yu , Xiaosong An , Jiahao Lin , Shanjun Li , Yaohui Chen","doi":"10.1016/j.inpa.2022.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Compared with manual sorting of citrus fruit, vision-based sorting solutions can help achieve higher accuracy and efficiency. In this study, we present a vision system based on CNN-LSTM, which can cooperate with robotic grippers for real-time sorting and is readily applicable to various citrus processing plants. A CNN-based detector was adopted to detect the defective oranges in view and temporarily classify them into corresponding types, and an LSTM-based predictor was used to predict the position of the oranges in a future frame based on image sequential data. The fusion of CNN and LSTM networks enabled the system to track defective ones during rotation and identify their true types, and their future path was also predicted which is vital for predictive control of visually guided robotic grasping. High detection accuracy of 94.1% was obtained based on experimental results, and the error for path prediction was within 4.33 pixels 40 frames later. The average time to process a frame was between 28 and 62 frames per second, which also satisfied real-time performance. The results proved the potential of the proposed system for automated citrus sorting with good precision and efficiency, and it can be readily extended to other fruit crops featuring high versatility.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 1","pages":"Pages 14-25"},"PeriodicalIF":7.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214317322000658/pdfft?md5=9e49e22a509d859ce892038100cfa1f9&pid=1-s2.0-S2214317322000658-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Compared with manual sorting of citrus fruit, vision-based sorting solutions can help achieve higher accuracy and efficiency. In this study, we present a vision system based on CNN-LSTM, which can cooperate with robotic grippers for real-time sorting and is readily applicable to various citrus processing plants. A CNN-based detector was adopted to detect the defective oranges in view and temporarily classify them into corresponding types, and an LSTM-based predictor was used to predict the position of the oranges in a future frame based on image sequential data. The fusion of CNN and LSTM networks enabled the system to track defective ones during rotation and identify their true types, and their future path was also predicted which is vital for predictive control of visually guided robotic grasping. High detection accuracy of 94.1% was obtained based on experimental results, and the error for path prediction was within 4.33 pixels 40 frames later. The average time to process a frame was between 28 and 62 frames per second, which also satisfied real-time performance. The results proved the potential of the proposed system for automated citrus sorting with good precision and efficiency, and it can be readily extended to other fruit crops featuring high versatility.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining