{"title":"RIPK1 and RIPK3 – emerging targets in cancer?","authors":"K. Gurol, Suraj Shah, A. Degterev","doi":"10.26781/2052-8426-2018-03","DOIUrl":null,"url":null,"abstract":"\n \nAbstract: RIPK1 and RIPK3 are homologous Ser/Thr kinases, which act in concert within the necrosome complexes to initiate a sub-type of regulated necrosis, termed necroptosis. Necroptosis has gradually emerged as a highly clinically relevant form of necrosis, which can be targeted therapeutically. Besides necroptosis, RIPK1 and RIPK3 have been implicated in other pathophysiologically-relevant responses, including regulation of apoptosis and inflammation. More recently, it became evident that RIPK1/RIPK3 pathways may be systematically altered in cancers. Status of these pathways may provide a prognostic value, and therapeutic modulation of RIPK1/RIPK3 signaling may represent a new strategy against various forms of human cancer. \n \n \n ","PeriodicalId":90271,"journal":{"name":"Molecular and cellular therapies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and cellular therapies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26781/2052-8426-2018-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract: RIPK1 and RIPK3 are homologous Ser/Thr kinases, which act in concert within the necrosome complexes to initiate a sub-type of regulated necrosis, termed necroptosis. Necroptosis has gradually emerged as a highly clinically relevant form of necrosis, which can be targeted therapeutically. Besides necroptosis, RIPK1 and RIPK3 have been implicated in other pathophysiologically-relevant responses, including regulation of apoptosis and inflammation. More recently, it became evident that RIPK1/RIPK3 pathways may be systematically altered in cancers. Status of these pathways may provide a prognostic value, and therapeutic modulation of RIPK1/RIPK3 signaling may represent a new strategy against various forms of human cancer.