I. Benitez, Jessa A. Ibañez, Cenon D. Lumabad, Jayson M. Cañete, F. N. De los Reyes, J. Principe
{"title":"A novel data gaps filling method for solar PV output forecasting","authors":"I. Benitez, Jessa A. Ibañez, Cenon D. Lumabad, Jayson M. Cañete, F. N. De los Reyes, J. Principe","doi":"10.1063/5.0157570","DOIUrl":null,"url":null,"abstract":"This study proposes a modified gaps filling method, expanding the column mean imputation method and evaluated using randomly generated missing values comprising 5%, 10%, 15%, and 20% of the original data on power output. The XGBoost algorithm was implemented as a forecasting model using the original and processed datasets and two sources of solar radiation data, namely, Shortwave Radiation (SWR) from Advanced Himawari Imager 8 (AHI-8) and Surface Solar Radiation Downward (SSRD) from ERA5 global reanalysis data. The accuracy of the two sets of forecasted power output was evaluated using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Results show that by applying the proposed gap filling method and using SWR in forecasting solar photovoltaic (PV) output, the improvement in the RMSE and MAE values range from 12.52% to 24.30% and from 21.10% to 31.31%, respectively. Meanwhile, using SSRD, the improvement in the RMSE values range from 14.01% to 28.54% and MAE values from 22.39% to 35.53%. To further evaluate the accuracy of the proposed gap-filling method, the proposed method could be validated using different datasets and other forecasting methods. Future studies could also consider applying the said method to datasets with data gaps higher than 20%.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0157570","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
This study proposes a modified gaps filling method, expanding the column mean imputation method and evaluated using randomly generated missing values comprising 5%, 10%, 15%, and 20% of the original data on power output. The XGBoost algorithm was implemented as a forecasting model using the original and processed datasets and two sources of solar radiation data, namely, Shortwave Radiation (SWR) from Advanced Himawari Imager 8 (AHI-8) and Surface Solar Radiation Downward (SSRD) from ERA5 global reanalysis data. The accuracy of the two sets of forecasted power output was evaluated using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Results show that by applying the proposed gap filling method and using SWR in forecasting solar photovoltaic (PV) output, the improvement in the RMSE and MAE values range from 12.52% to 24.30% and from 21.10% to 31.31%, respectively. Meanwhile, using SSRD, the improvement in the RMSE values range from 14.01% to 28.54% and MAE values from 22.39% to 35.53%. To further evaluate the accuracy of the proposed gap-filling method, the proposed method could be validated using different datasets and other forecasting methods. Future studies could also consider applying the said method to datasets with data gaps higher than 20%.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy