Higher bifurcations for polynomial skew products

Pub Date : 2020-06-26 DOI:10.3934/jmd.2022003
M. Astorg, Fabrizio Bianchi
{"title":"Higher bifurcations for polynomial skew products","authors":"M. Astorg, Fabrizio Bianchi","doi":"10.3934/jmd.2022003","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We continue our investigation of the parameter space of families of polynomial skew products. Assuming that the base polynomial has a Julia set not totally disconnected and is neither a Chebyshev nor a power map, we prove that, near any bifurcation parameter, one can find parameters where <inline-formula><tex-math id=\"M1\">\\begin{document}$ k $\\end{document}</tex-math></inline-formula> critical points bifurcate <i>independently</i>, with <inline-formula><tex-math id=\"M2\">\\begin{document}$ k $\\end{document}</tex-math></inline-formula> up to the dimension of the parameter space. This is a striking difference with respect to the one-dimensional case. The proof is based on a variant of the inclination lemma, applied to the postcritical set at a Misiurewicz parameter. By means of an analytical criterion for the non-vanishing of the self-intersections of the bifurcation current, we deduce the equality of the supports of the bifurcation current and the bifurcation measure for such families. Combined with results by Dujardin and Taflin, this also implies that the support of the bifurcation measure in these families has non-empty interior. As part of our proof we construct, in these families, subfamilies of codimension 1 where the bifurcation locus has non empty interior. This provides a new independent proof of the existence of holomorphic families of arbitrarily large dimension whose bifurcation locus has non empty interior. Finally, it shows that the Hausdorff dimension of the support of the bifurcation measure is maximal at any point of its support.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We continue our investigation of the parameter space of families of polynomial skew products. Assuming that the base polynomial has a Julia set not totally disconnected and is neither a Chebyshev nor a power map, we prove that, near any bifurcation parameter, one can find parameters where \begin{document}$ k $\end{document} critical points bifurcate independently, with \begin{document}$ k $\end{document} up to the dimension of the parameter space. This is a striking difference with respect to the one-dimensional case. The proof is based on a variant of the inclination lemma, applied to the postcritical set at a Misiurewicz parameter. By means of an analytical criterion for the non-vanishing of the self-intersections of the bifurcation current, we deduce the equality of the supports of the bifurcation current and the bifurcation measure for such families. Combined with results by Dujardin and Taflin, this also implies that the support of the bifurcation measure in these families has non-empty interior. As part of our proof we construct, in these families, subfamilies of codimension 1 where the bifurcation locus has non empty interior. This provides a new independent proof of the existence of holomorphic families of arbitrarily large dimension whose bifurcation locus has non empty interior. Finally, it shows that the Hausdorff dimension of the support of the bifurcation measure is maximal at any point of its support.

分享
查看原文
多项式偏积的高分岔
我们继续研究多项式斜积族的参数空间。假设基多项式有一个不完全断开的Julia集,既不是Chebyshev也不是幂映射,我们证明了在任何分叉参数附近,都可以找到其中\ begin{document}$k$\end{document}临界点独立分叉的参数,\ begin{document}$k$\end{document}一直到参数空间的维数。与一维情况相比,这是一个显著的差异。该证明基于倾斜引理的变体,应用于Misiurewicz参数下的后临界集。利用分岔电流自交点不消失的一个分析准则,我们推导出这类族的分岔电流的支撑和分岔测度的相等性。结合Dujardin和Taflin的结果,这也暗示了分支测度在这些族中的支持具有非空的内部。作为证明的一部分,我们在这些族中构造了余维1的亚族,其中分支轨迹具有非空内部。这为分支轨迹具有非空内部的任意大维全纯族的存在性提供了一个新的独立证明。最后,证明了分支测度的支持的Hausdorff维数在其支持的任何点都是最大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信