{"title":"A dynamic process reference model for sparse networks with reciprocity","authors":"C. Butts","doi":"10.1080/0022250X.2020.1795652","DOIUrl":null,"url":null,"abstract":"ABSTRACT Many social and other networks exhibit stable size scaling relationships, such that features such as mean degree or reciprocation rates change slowly or are approximately constant as the number of vertices increases. Statistical network models built on top of simple Bernoulli baseline (or reference) measures often behave unrealistically in this respect, leading to the development of sparse reference models that preserve features such as mean degree scaling. In this paper, we generalize recent work on the micro-foundations of such reference models to the case of sparse directed graphs with non-vanishing reciprocity, providing a dynamic process interpretation of the emergence of stable macroscopic behavior.","PeriodicalId":50139,"journal":{"name":"Journal of Mathematical Sociology","volume":"46 1","pages":"1 - 27"},"PeriodicalIF":1.3000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0022250X.2020.1795652","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Sociology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/0022250X.2020.1795652","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT Many social and other networks exhibit stable size scaling relationships, such that features such as mean degree or reciprocation rates change slowly or are approximately constant as the number of vertices increases. Statistical network models built on top of simple Bernoulli baseline (or reference) measures often behave unrealistically in this respect, leading to the development of sparse reference models that preserve features such as mean degree scaling. In this paper, we generalize recent work on the micro-foundations of such reference models to the case of sparse directed graphs with non-vanishing reciprocity, providing a dynamic process interpretation of the emergence of stable macroscopic behavior.
期刊介绍:
The goal of the Journal of Mathematical Sociology is to publish models and mathematical techniques that would likely be useful to professional sociologists. The Journal also welcomes papers of mutual interest to social scientists and other social and behavioral scientists, as well as papers by non-social scientists that may encourage fruitful connections between sociology and other disciplines. Reviews of new or developing areas of mathematics and mathematical modeling that may have significant applications in sociology will also be considered.
The Journal of Mathematical Sociology is published in association with the International Network for Social Network Analysis, the Japanese Association for Mathematical Sociology, the Mathematical Sociology Section of the American Sociological Association, and the Methodology Section of the American Sociological Association.