{"title":"Comparative Analysis of the Properties of Biocatalysts Based on Chymotrypsin Immobilized on Polysaccharide Supports","authors":"A. A. Krasnoshtanova, A. D. Bezyaeva","doi":"10.1134/S2070050422040043","DOIUrl":null,"url":null,"abstract":"<p>The effect of the type of polysaccharide support for immobilization and encapsulation on the stability of chymotrypsin was studied. The synthesized biocatalysts were compared according to their proteolytic activity. The cellulose–chitosan composite was found to have the highest proteolytic activity equal to 192 units/g. Immobilization was found to slightly change the optimum temperature and pH of chymotrypsin, but they substantially grew toward higher temperatures and alkaline pH values. The greatest relative increase in the activity of immobilized chymotrypsin was observed when using the cellulose–chitosan composite. The activity of chymotrypsin changed by no more than 45–50% during storage of the cellulose–chitosan and cellulose–alginate composites for 24 months. According to the results of our study, the cellulose–chitosan composite was the optimum support for immobilization of chymotrypsin.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"14 4","pages":"395 - 400"},"PeriodicalIF":0.7000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050422040043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The effect of the type of polysaccharide support for immobilization and encapsulation on the stability of chymotrypsin was studied. The synthesized biocatalysts were compared according to their proteolytic activity. The cellulose–chitosan composite was found to have the highest proteolytic activity equal to 192 units/g. Immobilization was found to slightly change the optimum temperature and pH of chymotrypsin, but they substantially grew toward higher temperatures and alkaline pH values. The greatest relative increase in the activity of immobilized chymotrypsin was observed when using the cellulose–chitosan composite. The activity of chymotrypsin changed by no more than 45–50% during storage of the cellulose–chitosan and cellulose–alginate composites for 24 months. According to the results of our study, the cellulose–chitosan composite was the optimum support for immobilization of chymotrypsin.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.