Random walks on Cayley graphs of complex reflection groups

Q4 Mathematics
M. Vaskouski
{"title":"Random walks on Cayley graphs of complex reflection groups","authors":"M. Vaskouski","doi":"10.33581/2520-6508-2021-3-51-56","DOIUrl":null,"url":null,"abstract":"Asymptotic properties of random walks on minimal Cayley graphs of complex reflection groups are investigated. The main result of the paper is theorem on fast mixing for random walks on Cayley graphs of complex reflection groups. Particularly, bounds of diameters and isoperimetric constants, a known result on fast fixing property for expander graphs play a crucial role to obtain the main result. A constructive way to prove a special case of Babai’s conjecture on logarithmic order of diameters for complex reflection groups is proposed. Basing on estimates of diameters and Cheeger inequality, there is obtained a non-trivial lower bound for spectral gaps of minimal Cayley graphs on complex reflection groups.","PeriodicalId":36323,"journal":{"name":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-6508-2021-3-51-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Asymptotic properties of random walks on minimal Cayley graphs of complex reflection groups are investigated. The main result of the paper is theorem on fast mixing for random walks on Cayley graphs of complex reflection groups. Particularly, bounds of diameters and isoperimetric constants, a known result on fast fixing property for expander graphs play a crucial role to obtain the main result. A constructive way to prove a special case of Babai’s conjecture on logarithmic order of diameters for complex reflection groups is proposed. Basing on estimates of diameters and Cheeger inequality, there is obtained a non-trivial lower bound for spectral gaps of minimal Cayley graphs on complex reflection groups.
复反射群的Cayley图上的随机漫步
研究了复反射群的极小Cayley图上随机游动的渐近性质。本文的主要结果是复反射群的Cayley图上随机游动的快速混合定理。特别是直径和等周常数的界,一个关于展开图快速固定性质的已知结果,对获得主要结果起着至关重要的作用。提出了一种构造性的方法来证明关于复反射群直径对数阶的Babai猜想的一个特例。基于直径估计和Cheeger不等式,得到了复反射群上极小Cayley图谱隙的一个非平凡下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
21
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信