{"title":"Stability analysis of a fractional ordered COVID-19 model","authors":"Meghadri Das, G. Samanta","doi":"10.1515/cmb-2020-0116","DOIUrl":null,"url":null,"abstract":"Abstract The main purpose of this work is to study transmission dynamics of COVID-19 in Italy 2020, where the first case of Coronavirus disease 2019 (COVID-19) in Italy was reported on 31st January 2020. Taking into account the uncertainty due to the limited information about the Coronavirus (COVID-19), we have taken the modified Susceptible-Asymptomatic-Infectious-Recovered (SAIR) compartmental model under fractional order framework. We have formulated our model by subdividing infectious compartment into two sub compartments (reported and unreported) and introduced hospitalized class. In this work, we have studied the local and global stability of the system at different equilibrium points (disease free and endemic) and calculated sensitivity index for Italy scenario. The validity of the model is justified by comparing real data with the results obtained from simulations.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"9 1","pages":"22 - 45"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cmb-2020-0116","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2020-0116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 21
Abstract
Abstract The main purpose of this work is to study transmission dynamics of COVID-19 in Italy 2020, where the first case of Coronavirus disease 2019 (COVID-19) in Italy was reported on 31st January 2020. Taking into account the uncertainty due to the limited information about the Coronavirus (COVID-19), we have taken the modified Susceptible-Asymptomatic-Infectious-Recovered (SAIR) compartmental model under fractional order framework. We have formulated our model by subdividing infectious compartment into two sub compartments (reported and unreported) and introduced hospitalized class. In this work, we have studied the local and global stability of the system at different equilibrium points (disease free and endemic) and calculated sensitivity index for Italy scenario. The validity of the model is justified by comparing real data with the results obtained from simulations.