Analytic Hypoellipticity and the Treves Conjecture

IF 0.2 Q4 MATHEMATICS
M. Mughetti
{"title":"Analytic Hypoellipticity and the Treves Conjecture","authors":"M. Mughetti","doi":"10.6092/ISSN.2240-2829/6690","DOIUrl":null,"url":null,"abstract":"We are concerned with the problem of the analytic hypoellipticity; precisely, we focus on the real analytic regularity of the solutions of sums of squares with real analytic coefficients. Treves conjecture states that an operator of this type is analytic hypoelliptic if and only if all the strata in the Poisson-Treves stratification are symplectic. We discuss a model operator, P , (firstly appeared and studied in [3]) having a single symplectic stratum and prove that it is not analytic hypoelliptic. This yields a counterexample to the sufficient part of Treves conjecture; the necessary part is still an open problem.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"7 1","pages":"53-68"},"PeriodicalIF":0.2000,"publicationDate":"2017-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/6690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with the problem of the analytic hypoellipticity; precisely, we focus on the real analytic regularity of the solutions of sums of squares with real analytic coefficients. Treves conjecture states that an operator of this type is analytic hypoelliptic if and only if all the strata in the Poisson-Treves stratification are symplectic. We discuss a model operator, P , (firstly appeared and studied in [3]) having a single symplectic stratum and prove that it is not analytic hypoelliptic. This yields a counterexample to the sufficient part of Treves conjecture; the necessary part is still an open problem.
解析亚椭圆性与Treves猜想
我们研究解析亚椭圆性问题;确切地说,我们关注的是具有实解析系数的平方和解的实解析正则性。特里夫斯猜想指出,当且仅当泊松-特里夫斯层理中的所有地层都是辛的,这种类型的算子是解析的半椭圆的。讨论了一类具有单一辛层的模型算子P,并证明了它不是解析次椭圆的。这就得到了特里夫斯猜想充分部分的一个反例;必要的部分仍然是一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信