Removal of antibiotics with different charges in water by graphene oxide membranes

IF 4.3 4区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL
Water Reuse Pub Date : 2023-05-06 DOI:10.2166/wrd.2023.084
Zimeng Liang, Xin Zhao, Weiqi Huang, Huabiao Qi, Can Wang
{"title":"Removal of antibiotics with different charges in water by graphene oxide membranes","authors":"Zimeng Liang, Xin Zhao, Weiqi Huang, Huabiao Qi, Can Wang","doi":"10.2166/wrd.2023.084","DOIUrl":null,"url":null,"abstract":"\n \n Antibiotics are a large group of emerging organic pollutants with low concentration levels in the water. The presence of antibiotics will affect the ecological environment and human health. The removal of trace organic compounds by graphene oxide (GO) membranes has attracted extensive attention. This study investigated the removal of three differently charged antibiotics by GO membranes and the influence of water quality on the removal of antibiotics. It showed that a crosslinked ethylenediamine-GO (EDA-GO) membrane had better stability and higher antibiotic removal performance than a non-crosslinked GO membrane. Among the three antibiotics, penicillin (PNC) was negatively charged and had the highest removal efficiency due to steric effect and electrostatic repulsion. A low concentration (10 mmol L−1) of Na+ in water could increase the membrane flux but had no significant effect on the removal of antibiotics. Ca2+ could reduce the membrane flux and improve the removal of chloramphenicol (CAP) and PNC. The removal efficiencies of low-concentration antibiotics (500 μg L−1) were higher than those of high-concentration antibiotics (10 mg L−1). Furthermore, the removal of antibiotics under the condition of actual wastewater quality was higher than those in solutions prepared with ultrapure water. The EDA-GO membrane has great potential in the removal of antibiotics in wastewater.","PeriodicalId":34727,"journal":{"name":"Water Reuse","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Reuse","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wrd.2023.084","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

Abstract

Antibiotics are a large group of emerging organic pollutants with low concentration levels in the water. The presence of antibiotics will affect the ecological environment and human health. The removal of trace organic compounds by graphene oxide (GO) membranes has attracted extensive attention. This study investigated the removal of three differently charged antibiotics by GO membranes and the influence of water quality on the removal of antibiotics. It showed that a crosslinked ethylenediamine-GO (EDA-GO) membrane had better stability and higher antibiotic removal performance than a non-crosslinked GO membrane. Among the three antibiotics, penicillin (PNC) was negatively charged and had the highest removal efficiency due to steric effect and electrostatic repulsion. A low concentration (10 mmol L−1) of Na+ in water could increase the membrane flux but had no significant effect on the removal of antibiotics. Ca2+ could reduce the membrane flux and improve the removal of chloramphenicol (CAP) and PNC. The removal efficiencies of low-concentration antibiotics (500 μg L−1) were higher than those of high-concentration antibiotics (10 mg L−1). Furthermore, the removal of antibiotics under the condition of actual wastewater quality was higher than those in solutions prepared with ultrapure water. The EDA-GO membrane has great potential in the removal of antibiotics in wastewater.
氧化石墨烯膜去除水中不同电荷的抗生素
抗生素是一大类新出现的水中低浓度有机污染物。抗生素的存在将影响生态环境和人类健康。氧化石墨烯(GO)膜对痕量有机化合物的去除引起了人们的广泛关注。本研究考察了GO膜对三种不同电荷抗生素的去除作用以及水质对抗生素去除的影响。结果表明,与非交联GO膜相比,交联乙二胺GO膜具有更好的稳定性和更高的抗生素去除性能。在三种抗生素中,青霉素(PNC)带负电荷,由于空间效应和静电排斥,其去除效率最高。水中低浓度(10 mmol L−1)的Na+可以增加膜通量,但对抗生素的去除没有显著影响。Ca2+可降低膜通量,提高对氯霉素(CAP)和PNC的去除率。低浓度抗生素(500μg L-1)的去除率高于高浓度抗生素(10 mg L-1)。此外,在实际废水质量条件下,抗生素的去除率高于用超纯水制备的溶液。EDA-GO膜在去除废水中的抗生素方面具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Reuse
Water Reuse Multiple-
CiteScore
6.20
自引率
8.90%
发文量
0
审稿时长
7 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信