Vì C. E. Kronberg, S. Muntean, N. Kröger, A. Muntean
{"title":"Numerical explorations of solvent borne adhesives: a lattice-based approach to morphology formation","authors":"Vì C. E. Kronberg, S. Muntean, N. Kröger, A. Muntean","doi":"10.1088/1361-651X/acee5b","DOIUrl":null,"url":null,"abstract":"The internal structure of adhesive tapes determines the effective mechanical properties. This holds true especially for blended systems, here consisting of acrylate and rubber phases. In this note, we propose a lattice-based model to study numerically the formation of internal morphologies within a four-component mixture (of discrete particles) where the solvent components evaporate. Mimicking numerically the interaction between rubber, acrylate, and two different types of solvents, relevant for the technology of adhesive tapes, we aim to obtain realistic distributions of rubber ball-shaped morphologies—they play a key role in the overall functionality of those special adhesives. Our model incorporates the evaporation of both solvents and allows for tuning the strength of two essentially different solvent–solute interactions and of the temperature of the system.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651X/acee5b","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The internal structure of adhesive tapes determines the effective mechanical properties. This holds true especially for blended systems, here consisting of acrylate and rubber phases. In this note, we propose a lattice-based model to study numerically the formation of internal morphologies within a four-component mixture (of discrete particles) where the solvent components evaporate. Mimicking numerically the interaction between rubber, acrylate, and two different types of solvents, relevant for the technology of adhesive tapes, we aim to obtain realistic distributions of rubber ball-shaped morphologies—they play a key role in the overall functionality of those special adhesives. Our model incorporates the evaporation of both solvents and allows for tuning the strength of two essentially different solvent–solute interactions and of the temperature of the system.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.