Anne-Laure Basdevant, Jean-Baptiste Gou'er'e, Marie Th'eret
{"title":"First-order behavior of the time constant in Bernoulli first-passage percolation","authors":"Anne-Laure Basdevant, Jean-Baptiste Gou'er'e, Marie Th'eret","doi":"10.1214/22-aap1795","DOIUrl":null,"url":null,"abstract":"We consider the standard model of first-passage percolation on Z (d ≥ 2), with i.i.d. passage times associated with either the edges or the vertices of the graph. We focus on the particular case where the distribution of the passage times is the Bernoulli distribution with parameter 1− ε. These passage times induce a random pseudo-metric Tε on R. By subadditive arguments, it is well known that for any z ∈ R \\ {0}, the sequence Tε(0, bnzc)/n converges a.s. towards a constant με(z) called the time constant. We investigate the behavior of ε 7→ με(z) near 0, and prove that με(z) = ‖z‖1 − C(z)ε1/d1(z) + o(ε1/d1(z)), where d1(z) is the number of non null coordinates of z, and C(z) is a constant whose dependence on z is partially explicit.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1795","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
We consider the standard model of first-passage percolation on Z (d ≥ 2), with i.i.d. passage times associated with either the edges or the vertices of the graph. We focus on the particular case where the distribution of the passage times is the Bernoulli distribution with parameter 1− ε. These passage times induce a random pseudo-metric Tε on R. By subadditive arguments, it is well known that for any z ∈ R \ {0}, the sequence Tε(0, bnzc)/n converges a.s. towards a constant με(z) called the time constant. We investigate the behavior of ε 7→ με(z) near 0, and prove that με(z) = ‖z‖1 − C(z)ε1/d1(z) + o(ε1/d1(z)), where d1(z) is the number of non null coordinates of z, and C(z) is a constant whose dependence on z is partially explicit.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.